Abstract

High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 °C on a silicon trench template. Silicon between vertical TiN layers is selectively etched to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 μm. Dielectric functions of TiN films with different thicknesses of 18 – 105 nm and post-annealing temperatures of 700 – 900 °C are characterized by an ellipsometer. We found that the highest annealing temperature of 900 °C gives the most pronounced plasmonic behavior with the highest plasma frequency, ωp = 2.53 eV (λp = 490 nm). Such high aspect ratio trench structures function as a plasmonic grating sensor that supports the Rayleigh-Woods anomalies (RWAs), enabling the measurement of changes in the refractive index of the ambient medium in the wavelength range of 600 – 900 nm. We achieved the bulk refractive index sensitivity (BRIS) of approximately 430 nm/RIU relevant to biosensing liquids.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

Room temperature fabrication of titanium nitride thin films as plasmonic materials by high-power impulse magnetron sputtering

Zih-Ying Yang, Yi-Hsun Chen, Bo-Huei Liao, and Kuo-Ping Chen
Opt. Mater. Express 6(2) 540-551 (2016)

Plasmonic arrays of titanium nitride nanoparticles fabricated from epitaxial thin films

Shunsuke Murai, Koji Fujita, Yohei Daido, Ryuichiro Yasuhara, Ryosuke Kamakura, and Katsuhisa Tanaka
Opt. Express 24(2) 1143-1153 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007).
    [Crossref]
  3. S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
    [Crossref] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010).
    [Crossref] [PubMed]
  5. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
    [Crossref] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
    [Crossref]
  7. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
    [Crossref]
  8. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
    [Crossref] [PubMed]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  10. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  11. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6(11), 709–713 (2012).
    [Crossref]
  12. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013).
    [Crossref] [PubMed]
  13. S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies inmetallic nanogratings,” Opt. Express 21(20), 23531–23542 (2013).
    [Crossref] [PubMed]
  14. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
    [Crossref]
  15. B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
    [Crossref]
  16. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  17. H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
    [Crossref]
  18. H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1–2), 1–13 (1994)
    [Crossref]
  19. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  20. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012).
    [Crossref]
  21. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref] [PubMed]
  22. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
    [Crossref] [PubMed]
  23. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
    [Crossref]
  24. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
    [Crossref]
  25. S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
    [Crossref]
  26. L. Berthod, V. Gǎtè, M. Bichotte, M. Langlet, f. Vocanson, C. Jimenez, d. Jamon, I. Verrier, C. Veillas, O. Parriaux, and Y. Jourlin, “Direct fabrication of metal-like TiN-based plasmonic grating using nitridation of a photopatternable TiO2 sol-gel film,” Opt. Mater. Express 6(8) 2508–2520 (2016)
    [Crossref]
  27. U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
    [Crossref]
  28. I.-S. Yu, H.-E. Cheng, C.-C. Chang, Y.-W. Lin, H.-T. Chen, Y.-C. Wang, and Z.-P. Yang, “Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films,” Opt. Mater. Express 7(3), 777–784 (2017).
    [Crossref]
  29. L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467
  30. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref]
  31. D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
    [Crossref]
  32. S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
    [Crossref] [PubMed]
  33. E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
    [Crossref]
  34. C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
    [Crossref] [PubMed]
  35. C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
    [Crossref]
  36. E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
    [Crossref]
  37. O. Takayama, E. Shkondin, A. Bodganov, M. E. A. Panah, K. Golenitskii, P. Dmitriev, T. Repän, R. Malureanu, P. Belov, F. Jensen, and A. V. Lavrinenko, “Mid-infrared directional surface waves on a high aspect ratio nano-trench platform,” https://arxiv.org/abs/1704.06108 .
  38. P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
    [Crossref]
  39. C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
    [Crossref]
  40. M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
    [Crossref]
  41. J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
    [Crossref]
  42. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
    [Crossref]
  43. B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
    [Crossref]
  44. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
    [Crossref]
  45. H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
    [Crossref] [PubMed]
  46. T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
    [Crossref] [PubMed]
  47. L. Rayleigh, “On the dynamic theory of gratings,” Proc. R. Soc. Lond. 79(532), 399–416 (1907)
    [Crossref]
  48. D. Maystre, “Theory of Wood’s anomalies,” in Plasmonics, s. Enoch and N. Bonod, eds. (Springer, 2012), pp. 39–83
    [Crossref]
  49. A. V. Wolf, Aqueous solutions and body fluids, Their concentrative properties and conversion tables (Hoeber Medical Division, Harper & Row, Publishers, New York, 1966).
  50. B. S. Neuhausen and D. M. Rioch, “The refractometric determination of serum proteins,” J. Biol. Chem. 55, 353–536 (1923).
  51. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
    [Crossref] [PubMed]
  52. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
    [Crossref] [PubMed]
  53. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  54. J. A. Polo and A. Lakhtakia, “Surface Eelectromagnetic waves: a review,” Photonics Laser Rev. 246, 234–246 (2011).
    [Crossref]
  55. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  56. D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
    [Crossref]
  57. O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
    [Crossref] [PubMed]
  58. M. A. Noginov, “Nano-optics: steering Dyakonov-like waves,” Nat. Nanotechnol. 9(6), 414–415 (2014).
    [Crossref] [PubMed]
  59. A. Samusev, I. Mukhin, R. Malureanu, O. Takayama, D. V. Permyakov, I. S. Sinev, D. Baranov, O. Yermakov, I. V. Iorsh, A. A. Bogdanov, and A. V. Lavrinenko, “Two-dimensional optical plasmons with mixed polarization on anisotropic resonant metasurface,” https://arxiv.org/abs/1705.06078
  60. O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

2017 (7)

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

I.-S. Yu, H.-E. Cheng, C.-C. Chang, Y.-W. Lin, H.-T. Chen, Y.-C. Wang, and Z.-P. Yang, “Substrate-insensitive atomic layer deposition of plasmonic titanium nitride films,” Opt. Mater. Express 7(3), 777–784 (2017).
[Crossref]

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

2016 (7)

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

L. Berthod, V. Gǎtè, M. Bichotte, M. Langlet, f. Vocanson, C. Jimenez, d. Jamon, I. Verrier, C. Veillas, O. Parriaux, and Y. Jourlin, “Direct fabrication of metal-like TiN-based plasmonic grating using nitridation of a photopatternable TiO2 sol-gel film,” Opt. Mater. Express 6(8) 2508–2520 (2016)
[Crossref]

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

2015 (6)

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
[Crossref]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

2014 (7)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
[Crossref] [PubMed]

M. A. Noginov, “Nano-optics: steering Dyakonov-like waves,” Nat. Nanotechnol. 9(6), 414–415 (2014).
[Crossref] [PubMed]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

2013 (6)

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013).
[Crossref] [PubMed]

S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies inmetallic nanogratings,” Opt. Express 21(20), 23531–23542 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
[Crossref]

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

2012 (2)

2011 (1)

J. A. Polo and A. Lakhtakia, “Surface Eelectromagnetic waves: a review,” Photonics Laser Rev. 246, 234–246 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010).
[Crossref] [PubMed]

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

2009 (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

2007 (1)

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007).
[Crossref]

2006 (1)

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

2005 (1)

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
[Crossref]

1998 (1)

C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
[Crossref]

1994 (1)

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1–2), 1–13 (1994)
[Crossref]

1923 (1)

B. S. Neuhausen and D. M. Rioch, “The refractometric determination of serum proteins,” J. Biol. Chem. 55, 353–536 (1923).

1907 (1)

L. Rayleigh, “On the dynamic theory of gratings,” Proc. R. Soc. Lond. 79(532), 399–416 (1907)
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Alford, N. McN.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Andryieuski, A.

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Artigas, D.

O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Attard, D.J.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Atwater, H. A.

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010).
[Crossref] [PubMed]

Aubry, A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Baday, M.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

Baik, K.

C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
[Crossref]

Barbe, C. J.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartlett, J. R.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Basov, D. N.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Belov, P.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Berthod, L.

Bhat, D. G.

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1–2), 1–13 (1994)
[Crossref]

Bichotte, M.

Block, I. D.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

Boag, A.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Bocková, M.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

Bogdanov, A.

O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

Boltasseva, A.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonner, C. E.

Braic, L.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Briggs, R. M.

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

Brodie, J. R. J.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

Brolo, A. G.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013).
[Crossref] [PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6(11), 709–713 (2012).
[Crossref]

Burgos, S. P.

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

Capretti, A.

Chandrasekar, R.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Chang, C.-C.

Chang-Hasnain, C.

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

Chen, H.-T.

Cheng, H.-E.

Chevolleau, T.

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Choi, C.

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Choi, C. J.

C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
[Crossref]

Cohen, L.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Crescitelli, A.

Cunningham, B. T.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

Cusano, A.

Dal Negro, L.

Darnon, M.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Demirci, U.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Depagne, C.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dobosz, P.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Doiron, B.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Drouin, D.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ecoffey, s.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Eitan, M.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eon, D.

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Esposito, E.

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fainman, Y.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Faryad, M.

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
[Crossref]

Fearn, S.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Feigenbaum, E.

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Finnie, K. S.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Galdi, V.

Ganesh, N.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

Garcia, I. J. V.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Gatè, V.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
[Crossref]

George, S. M.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

Ginzburg, P.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Gour, M.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Granata, C.

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Guler, U.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hanein, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Hanhauser, E.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Hattori, K.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Henrich, T. J.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Homola, J.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Hussain, R.

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Iluz, Z.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Inan, H.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

Inci, F.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Irudayaraj, J. M. K.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Iwai, H.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Iwamoto, T.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Jahangir, M.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Jamon, d.

Jaouad, A.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Jensen, F.

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Jimenez, C.

Joo, Y.

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Joubert, O.

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Jourlin, Y.

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kalfagiannis, N.

P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
[Crossref]

Kan, S.

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Kassavetis, S.

P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
[Crossref]

Kildishev, A. V.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012).
[Crossref]

Kim, C.

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Kim, H.

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Kim, J.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Kinsey, N.

Kivshar, Y. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
[Crossref]

Kuipers, L.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007).
[Crossref]

Kuritzkes, D. R.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Lakhtakia, A.

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
[Crossref]

J. A. Polo and A. Lakhtakia, “Surface Eelectromagnetic waves: a review,” Photonics Laser Rev. 246, 234–246 (2011).
[Crossref]

Langlet, M.

Larsen, P. V.

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Lavrinenko, A. V

O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

Lavrinenko, A. V.

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Lee, Ho W.

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

Lei, D. Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Lidstone, E. A.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Lifson, M. A.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

Lin, Y.-W.

Lindhard, J. M.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Liu, P.

Liu, Z.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Malureanu, R.

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Mar, M. D.

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Marriott, G.

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

Maystre, D.

D. Maystre, “Theory of Wood’s anomalies,” in Plasmonics, s. Enoch and N. Bonod, eds. (Springer, 2012), pp. 39–83
[Crossref]

Meng, X.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Mihai, A. P.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Mitchell, D.R.G.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Neuhausen, B. S.

B. S. Neuhausen and D. M. Rioch, “The refractometric determination of serum proteins,” J. Biol. Chem. 55, 353–536 (1923).

Ni, X.

Noginov, M. A.

Noginova, N.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Ohmi, S.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Oulton, R. F.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Panah, M. E. A.

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Parriaux, O.

Parsalas, P.

P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pendry, J. B.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Petrov, P. K.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010).
[Crossref] [PubMed]

Polo, J. A.

J. A. Polo and A. Lakhtakia, “Surface Eelectromagnetic waves: a review,” Photonics Laser Rev. 246, 234–246 (2011).
[Crossref]

Post, K. W.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Poyraz, M.

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

Prayakarao, S.

Pulsifer, D. P.

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
[Crossref]

Quidant, R.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the dynamic theory of gratings,” Proc. R. Soc. Lond. 79(532), 399–416 (1907)
[Crossref]

Rebenne, H. E.

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1–2), 1–13 (1994)
[Crossref]

Ricciardi, A.

Riley, C. T.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Rioch, D. M.

B. S. Neuhausen and D. M. Rioch, “The refractometric determination of serum proteins,” J. Biol. Chem. 55, 353–536 (1923).

Robbins, S.

Rodríguez-Fortuño, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Sadani, B.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Samallet, J. S. T.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4) 478–489 (2012).
[Crossref]

Sandtke, M.

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007).
[Crossref]

Sang, B. L.

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

Sanz, V.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Sato, F.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Savoia, S.

Scheuer, J.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Schroeder, J. L.

Seol, Y. S.

C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
[Crossref]

Shafiee, H.

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shkondin, E.

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Sirbuly, D. J.

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Smalley, J. S. T.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Sonnefraud, Y.

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

Špacková, B.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Stach, E.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Sun, T.

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

Svedendahl, M.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Takayama, O.

O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

E. Shkondin, O. Takayama, M. E. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Tonotani, J.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

Torner, L.

O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
[Crossref] [PubMed]

Torres, J.

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Triani, G.

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Vallier, L.

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Valsecchi, C.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vasilantonakis, N.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Veillas, C.

Verrier, I.

Vocanson, f.

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Wang, D.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Wang, Y.

Wang, Y.-C.

Wang, Z.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wiesner, U. B.

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Wolf, A. V.

A. V. Wolf, Aqueous solutions and body fluids, Their concentrative properties and conversion tables (Hoeber Medical Division, Harper & Row, Publishers, New York, 1966).

Woo, J.

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Wrobel, P.

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

Wurtz, G.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Yang, Z.-P.

Yavas, O.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
[Crossref]

Yifat, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Yu, I.-S.

Zayats, A. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Zemlyanov, D.

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhukovsky, S. V.

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

Zou, B.

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

ACS Photonics (1)

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy breaking of Wood’s anomaly for enhanced refractive index sensing,” ACS Photonics 2, 615–621 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

U. Guler, D. Zemlyanov, J. Kim, Z. Wang, R. Chandrasekar, X. Meng, E. Stach, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Plasmonic titanium nitride nanostructures via nitridation of nanopatterned titanium dioxide,” Adv. Opt. Mater. 5(7), 1600717 (2017).
[Crossref]

Appl. Surf. Sci. (1)

D.R.G. Mitchell, D.J. Attard, K. S. Finnie, G. Triani, C. J. Barbe, C. Depagne, and J. R. Bartlett, “TEM and ellipsometry studies of nanolaminate oxide films prepared using atomic layer deposition”, Appl. Surf. Sci. 243(1–4), 265–277 (2005).
[Crossref]

Chem. Rev. (2)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, 494–521 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, and U. Demirci, “Photonic crystals: emerging biosensors and their promise for point-of-care applications,” Chem. Soc. Rev. 46, 366–388 (2017).
[Crossref]

IEEE Sensors Journal (1)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors Journal,  8(3), 274–280 (2008).
[Crossref]

J. Biol. Chem. (1)

B. S. Neuhausen and D. M. Rioch, “The refractometric determination of serum proteins,” J. Biol. Chem. 55, 353–536 (1923).

J. Vac. Sci. Technol B (1)

B. L. Sang, M. Gour, M. Darnon, s. Ecoffey, A. Jaouad, B. Sadani, and D. Drouin, “Selective dry etching of TiN nanostructures over SiO2 nanotrenches using a Cl2/Ar/N2 inductively coupled plasma,” J. Vac. Sci. Technol B 3402M102 (2016)
[Crossref]

J. Vac. Sci. Technol. A (1)

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

J. Vac. Sci. Technol. B (2)

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Technol. B 21(5) 2163–2168 (2003).
[Crossref]

M. Darnon, T. Chevolleau, D. Eon, L. Vallier, J. Torres, and O. Joubert, “Etching characteristics of TiN used as hard mask in dielectric etch process,” J. Vac. Sci. Technol. B 24(5) 2262–2270 (2006)
[Crossref]

Journal of Physics: Condensed Matter (1)

O. Takayama, A. Bogdanov, and A. V Lavrinenko, “Photonic surface waves on metamaterials interfaces,” Journal of Physics: Condensed Matter,  29(46), 463001 (2017).

Jpn. J. Appl. Phys. (1)

C. J. Choi, Y. S. Seol, and K. Baik, “TiN etching and its effects on tungsten etching in SF6/Ar helicon plasma,” Jpn. J. Appl. Phys. 37801–806 (1998)
[Crossref]

Langmuir (1)

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29, 5638–5649 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Materials (1)

P. Parsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 83128–3154 (2015)
[Crossref]

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

Nano Lett. (3)

A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10(7), 2574–2579 (2010).
[Crossref] [PubMed]

S. P. Burgos, Ho W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and characterization of plasmonic resonant guided wave networks,” Nano Lett. 14(6), 3284–3292 (2014).
[Crossref] [PubMed]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17(7), 4421–4426 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. Belov, A. N. Poddubny, Y. S. Kivshar, G. Wurtz, and A. V. Zayats, “Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5, 3226 (2014).
[Crossref] [PubMed]

Nat. Mater. (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(10), 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves,” Nat. Nanotechnol. 9(6), 419–424 (2014).
[Crossref] [PubMed]

M. A. Noginov, “Nano-optics: steering Dyakonov-like waves,” Nat. Nanotechnol. 9(6), 414–415 (2014).
[Crossref] [PubMed]

Nat. Photon. (2)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6(11), 709–713 (2012).
[Crossref]

M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photon. 1(10), 573–576 (2007).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (6)

Photonics Laser Rev. (1)

J. A. Polo and A. Lakhtakia, “Surface Eelectromagnetic waves: a review,” Photonics Laser Rev. 246, 234–246 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Observation of the Dyakonov-Tamm Wave,” Phys. Rev. Lett. 111(24), 1–5 (2013).
[Crossref]

S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, “Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers,” Phys. Rev. Lett. 115(17), 177402 (2015).
[Crossref] [PubMed]

PNAS. (1)

C. T. Riley, J. S. T. Samallet, J. R. J. Brodie, Y. Fainman, D. J. Sirbuly, and Z. Liu, “Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles,” PNAS. 114(6) 1264–1268 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. 111, 7546–7551 (2014).
[Crossref] [PubMed]

Proc. R. Soc. Lond. (1)

L. Rayleigh, “On the dynamic theory of gratings,” Proc. R. Soc. Lond. 79(532), 399–416 (1907)
[Crossref]

Proceedings of the IEEE (1)

B. Špačková, P. Wrobel, M. Bocková, and J. Homola, “Optical biosensors based on plasmonic nanostructures: a review,” Proceedings of the IEEE,  23(12), 2380–2408 (2016).
[Crossref]

Sci. Rep. (2)

H. Shafiee, E. A. Lidstone, M. Jahangir, F. Inci, E. Hanhauser, T. J. Henrich, D. R. Kuritzkes, B. T. Cunningham, and U. Demirci, “Nanostructured optical photonic crystal biosensor for HIV viral load measurement,” Sci. Rep. 4, 4116 (2014).
[Crossref] [PubMed]

T. Sun, S. Kan, G. Marriott, and C. Chang-Hasnain, “High-contrast grating resonators for label-free detection of disease biomarkers,” Sci. Rep. 6, 27482 (2016).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Sensors Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Sensors and Actuators B (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54, 16–24 (1999).
[Crossref]

Small (1)

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref]

Surf. and Coat.Technol. (1)

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. and Coat.Technol. 63(1–2), 1–13 (1994)
[Crossref]

Trans. Electr. Electron. Mater. (1)

J. Woo, C. Choi, Y. Joo, H. Kim, and C. Kim, “The dry etching of TiN thin films using inductively coupled CF4/Ar plasma,” Trans. Electr. Electron. Mater. 14(2) 67–70 (2013)
[Crossref]

Other (5)

O. Takayama, E. Shkondin, A. Bodganov, M. E. A. Panah, K. Golenitskii, P. Dmitriev, T. Repän, R. Malureanu, P. Belov, F. Jensen, and A. V. Lavrinenko, “Mid-infrared directional surface waves on a high aspect ratio nano-trench platform,” https://arxiv.org/abs/1704.06108 .

D. Maystre, “Theory of Wood’s anomalies,” in Plasmonics, s. Enoch and N. Bonod, eds. (Springer, 2012), pp. 39–83
[Crossref]

A. V. Wolf, Aqueous solutions and body fluids, Their concentrative properties and conversion tables (Hoeber Medical Division, Harper & Row, Publishers, New York, 1966).

A. Samusev, I. Mukhin, R. Malureanu, O. Takayama, D. V. Permyakov, I. S. Sinev, D. Baranov, O. Yermakov, I. V. Iorsh, A. A. Bogdanov, and A. V. Lavrinenko, “Two-dimensional optical plasmons with mixed polarization on anisotropic resonant metasurface,” https://arxiv.org/abs/1705.06078

L. Braic, N. Vasilantonakis, A. P. Mihai, I. J. V. Garcia, S. Fearn, B. Zou, B. Doiron, R. F. Oulton, L. Cohen, S. A. Maier, N. McN. Alford, A. V. Zayats, and P. K. Petrov, “Titanium oxynitride thin films with tunable double epsilon-near-zero behaviour,” https://arxiv.org/abs/1703.09467

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Annealing of TiN samples 18nm, 55nm, 105nm and 118 nm. (a) Annealing recipe. (b) Annealing result in terms of annealing temperature, plasma frequency (red), and imaginary part of permittivity at the plasma frequency (blue).
Fig. 2
Fig. 2 Permittivity of TiN thin films measured by ellipsometer for the thickness of 18 nm, 55 nm, and 105 nm. (a) Permittivity of as-deposited samples for all three investigated thicknesses. (b)–(d) Changes of permittivity due to annealing at 700 °C, 800 °C, and 900 °C for samples with thickness 18 nm, 55 nm, and 105 nm, respectively.
Fig. 3
Fig. 3 Schematic of fabrication procedure. (a) Initial Si substrate. (b) Patterning of DUV resist. (c) Trench template fabrication using DRIE. (d) Conformal deposition of TiN inside Si trenches. (e) Etch of TiN using ICP. (f) Second ICP - etch of Si template, creating the TiN grating negative replica.
Fig. 4
Fig. 4 Scanning electron microscopy images of the fabricated TiN trench structures. (a) cross section and (b) bird-eye-view (insets above and below show zoomed in image of the top part and the photo image of the actual sample, respectively).
Fig. 5
Fig. 5 TiN-based refractive index sensing system. (a) Schematic illustration of reflection measurement. The structure is assumed to be analyte layer on top of TiN/Air trench structures. (b) Simulated reflection of the trench structure of analyte-TiN/Analyte trench-TiN/Si trench-Si substrate structure with analyte of air (black), distilled water (DI, blue), ethanol (green), and isopropanol (IPA, red). The inset in (b) shows the norm of electric field of the trench structures at the wavelength ofs 707 nm when the analyte is air. Reflection from the grating structure in terms of wavelength and (c) thickness of TiN trench t while keeping Λ = 400 nm, and (d) height of grating H when na = 1 (air) and ϕ = 50 °.
Fig. 6
Fig. 6 Measured reflection from the TiN trench structures for different analytes such as air, distilled water (blue), ethanol (breen), and isopropanol (red) in the wavelength range of (a) λ = 600 – 900 nm and (b) 800 – 900 nm. Note that the dashed square in (a) corresponds to (b). Colored shade represents an error bar.

Tables (3)

Tables Icon

Table 1 ALD recipe for deposition of TiN thin films.

Tables Icon

Table 2 Etching parameters of TiN and Si in ICP system.

Tables Icon

Table 3 Calculated and experimetally observed position of RWA peaks (m=1).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ( 1 ω p 2 ω 2 + i ω γ ) + j S j ω f , j 2 ω f , j 2 ω 2 i ω Γ j
K + m G = n a K 0 .
λ = Λ m ( n a ± sin ϕ ) ,
S b = Δ λ Δ n [ n m / RIU ] ,

Metrics