Abstract

We study the tsurface morphology and photoluminescence (PL) property of InAs quantum dots (QDs) on GaAs using bismuth (Bi) in the layer prior to or after the growth of QDs. Incorporating Bi in the layer prior to the QD deposition delays the onset of InAs QD formation resulting in a decrease in QD height and density. As a surfactant, adding Bi in the GaAs capping layer at a high growth temperature reduces the In surface diffusion length leading to uniform and well preserved InAs QDs in terms of height and density. The incorporation of 3% Bi at a low growth temperature, which forms a GaAsBi capping layer, can effectively lower the PL transition energy up to 163 meV and reduce the PL linewidth, leading to an emission wavelength of 1.365 μm at 77 K.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

15 August 2018: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

C/L-band emission of InAs QDs monolithically grown on Ge substrate

Wen-Qi Wei, Jian-Huan Wang, Yue Gong, Jin-An Shi, Lin Gu, Hong-Xing Xu, Ting Wang, and Jian-Jun Zhang
Opt. Mater. Express 7(8) 2955-2961 (2017)

In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates

Jonathan R. Orchard, Samuel Shutts, Angela Sobiesierski, Jiang Wu, Mingchu Tang, Siming Chen, Qi Jiang, Stella Elliott, Richard Beanland, Huiyun Liu, Peter M. Smowton, and David J. Mowbray
Opt. Express 24(6) 6196-6202 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).
  2. S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).
  3. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).
  4. Y. H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
    [PubMed]
  5. F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).
  6. N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).
  7. R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).
  8. N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
  9. H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).
  10. M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).
  11. S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).
  12. K. Oe, “Characteristics of Semiconductor Alloy GaAs1-xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).
  13. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
    [PubMed]
  14. L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).
  15. B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).
  16. V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).
  17. H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).
  18. D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).
  19. P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
    [PubMed]
  20. Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).
  21. H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).
  22. K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).
  23. S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).
  24. E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).
  25. H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).
  26. P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

2017 (2)

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

2016 (2)

Y. H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[PubMed]

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

2014 (1)

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

2012 (2)

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

2011 (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

2010 (3)

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

2006 (1)

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

2005 (3)

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).

2004 (1)

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

2003 (2)

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

2002 (3)

K. Oe, “Characteristics of Semiconductor Alloy GaAs1-xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

2001 (1)

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

2000 (2)

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

1992 (1)

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

1991 (1)

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).

Adamcyk, M.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Andersson, T. G.

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).

Arakawa, Y.

Y. H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[PubMed]

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Badcock, T. J.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Baidus, N.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Bank, S. R.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Beanland, R.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Birudavolu, S.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Bordel, D.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Caldas, M. l.

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Cao, C.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Chen, X.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Dasika, V. D.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

David, J. P. R.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Devreese, J. T.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Ding, D.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Dorogan, V. G.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Ekenstedt, M. J.

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).

Fan, D.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Ferdos, F.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Filatov, D.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Fluegel, B.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

Fomin, V. M.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Francoeur, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Fukatsu, S.

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

García, J. M.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Gladilin, V. N.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Gong, Q.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Gotoh, H.

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

Granados, D.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Groom, K. M.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Gu, Y.

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

Guimard, D.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Gushina, Y. Y.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Gutiérrez, M.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Hains, C. P.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Hirono, Y.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Hopkinson, M.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Huang, S.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Huffaker, D. L.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Ito, R.

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

Iwamoto, S.

Jhang, Y. H.

Jiang, Q.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Jiang, W. H.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Johnson, S. R.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Jung, D.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Kamada, H.

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

Karpovich, I.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Kim, J. O.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Klimeck, G.

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Koenraad, P. M.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Kovsh, A.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Krishna, S.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Krivoy, E. M.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Kryzhanovskaya, N.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Lao, Y.-F.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Larsson, A.

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

Ledentsov, N.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Lee, M. L.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Lester, L.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Li, C.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Li, H.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Li, Y.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Liang, D.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Liang, J. B.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Lin, F.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Liu, H.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Liu, H. Y.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Liu, J.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Lu, P.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Maddox, S. J.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Maleev, N.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Malloy, K.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Mascarenhas, A.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Maximov, M.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Mazur, Y. I.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Mikhrin, S.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Mochida, R.

Morihara, R.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Morozov, S.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Mowbray, D. J.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Muraki, K.

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

Nair, H. P.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Newell, T.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Nishioka, M.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Nuntawong, N.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Oe, K.

K. Oe, “Characteristics of Semiconductor Alloy GaAs1-xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).

Offermans, P.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Okamoto, H.

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

Pan, W.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Park, K. W.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Sadeghi, M.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Salamo, G. J.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Schuler-Sandy, T.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Seeds, A.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Sellers, I. R.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Semenova, E.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Seong, M. J.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Shao, J.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Shernyakov, Y. M.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Shiraki, Y.

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

Skolnick, M. S.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Sogawa, T.

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

Song, Y.

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

Soong, W. M.

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Stintz, A.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Studart, N.

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Sugawara, M.

Takemasa, K.

Tanabe, K.

Y. H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[PubMed]

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Tawara, T.

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

Tian, Z.-B.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Tiedje, T.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Tixier, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Unil Perera, A. G.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Usman, M.

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Varangis, P.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Vasil’ev, A.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Vasileska, D.

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Vukusic, J.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

Wakayama, Y.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

Wang, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Wang, P.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Wang, R.

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

Wang, S.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Wang, S. M.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Wang, T. M.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Wang, X. D.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Wang, Z. G.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Wang, Z. M.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Wei, Y.

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Wei, Y. Q.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Wolde, S.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Wolter, J. H.

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

Wu, J.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Wu, X.

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Xu, B.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Xu, H.

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

Ye, H.

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

Ye, X. L.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Young, E. C.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).

Yu, E. T.

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

Yu, S.-Q.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Yue, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Zeng, Z.

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Zhang, J. F.

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

Zhang, L.

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Zhang, Y. H.

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

Zhao, Q.

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

Zhao, Q. X.

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

Zhukov, A.

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Zvonkov, B.

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

AIP Adv. (1)

H. Ye, Y. Song, Y. Gu, and S. Wang, “Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 μm,” AIP Adv. 2, 042158 (2012).

AIP Conf. Proc. (1)

M. Usman, D. Vasileska, G. Klimeck, M. l. Caldas, and N. Studart, “Strain-engineered self-organized InAs/GaAs quantum dots for long wavelength (1.3 μm–1.5 μm) optical applications,” AIP Conf. Proc. 2010, 527–528 (2010).

Appl. Phys. Lett. (9)

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x<3.6%,” Appl. Phys. Lett. 82, 3874–3876 (2003).

V. D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, “Increased InAs quantum dot size and density using bismuth as a surfactant,” Appl. Phys. Lett. 105, 253104 (2014).

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96, 203507 (2010).

F. Ferdos, S. Wang, Y. Wei, A. Larsson, M. Sadeghi, and Q. Zhao, “Influence of a thin GaAs cap layer on structural and optical properties of InAs quantum dots,” Appl. Phys. Lett. 81, 1195–1197 (2002).

N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, “Effect of strain-compensation in stacked 1.3μm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).

P. Offermans, P. M. Koenraad, J. H. Wolter, D. Granados, J. M. García, V. M. Fomin, V. N. Gladilin, and J. T. Devreese, “Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs,” Appl. Phys. Lett. 87, 131902 (2005).

K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, “Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells,” Appl. Phys. Lett. 61, 557–559 (1992).

S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Interface morphology in molecular beam epitaxy grown In0.5Ga0.5As/GaAs strained heterostructures,” Appl. Phys. Lett. 59, 2156–2158 (1991).

Y. Q. Wei, S. M. Wang, F. Ferdos, J. Vukusic, A. Larsson, Q. X. Zhao, and M. Sadeghi, “Large ground-to-first-excited-state transition energy separation for InAs quantum dots emitting at 1.3 μm,” Appl. Phys. Lett. 81, 1621–1623 (2002).

Crystals (1)

L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, and S. Wang, “Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application,” Crystals 7, 63 (2017).

Electron. Lett. (1)

N. Ledentsov, A. Kovsh, A. Zhukov, N. Maleev, S. Mikhrin, A. Vasil’ev, E. Semenova, M. Maximov, Y. M. Shernyakov, and N. Kryzhanovskaya, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39, 1126–1128 (2003).

Ieee Photonic Tech L (1)

R. Wang, A. Stintz, P. Varangis, T. Newell, H. Li, K. Malloy, and L. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP [001],” Ieee Photonic Tech L 13, 767–769 (2001).

J. Appl. Phys. (2)

S. Wolde, Y.-F. Lao, A. G. Unil Perera, Y. H. Zhang, T. M. Wang, J. O. Kim, T. Schuler-Sandy, Z.-B. Tian, and S. Krishna, “Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors,” J. Appl. Phys. 121, 244501 (2017).

H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by InxGa1−xAs (0⩽x⩽0.3),” J. Appl. Phys. 88, 3392–3395 (2000).

J. Cryst. Growth (1)

E. C. Young, S. Tixier, and T. Tiedje, “Bismuth surfactant growth of the dilute nitride GaNxAs1−x,” J. Cryst. Growth 279, 316–320 (2005).

J. Mater. Sci. Mater. Electron. (1)

D. Fan, Z. Zeng, V. G. Dorogan, Y. Hirono, C. Li, Y. I. Mazur, S.-Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, “Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy,” J. Mater. Sci. Mater. Electron. 24, 1635–1639 (2012).

Jpn. J. Appl. Phys. (2)

H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, “Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant,” Jpn. J. Appl. Phys. 49, 06GJ01 (2010).

K. Oe, “Characteristics of Semiconductor Alloy GaAs1-xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).

Mater. Sci. Eng. C (1)

H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3-μm InAs/InGaAs dots-in-a-well structure: Achievement of high-performance laser,” Mater. Sci. Eng. C 25, 779–783 (2005).

Nanoscale Res. Lett. (1)

P. Wang, W. Pan, X. Wu, J. Liu, C. Cao, S. Wang, and Q. Gong, “Influence of GaAsBi Matrix on Optical and Structural Properties of InAs Quantum Dots,” Nanoscale Res. Lett. 11(1), 280 (2016).
[PubMed]

Nanotechnology (1)

B. Zvonkov, I. Karpovich, N. Baidus, D. Filatov, S. Morozov, and Y. Y. Gushina, “Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs,” Nanotechnology 11, 221 (2000).

Nat. Photonics (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5, 416–419 (2011).

Opt. Express (1)

Phys. Rev. Lett. (1)

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1-xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of three groups of InAs QDs grown under different conditions.
Fig. 2
Fig. 2 InAs QDs grown on (a) GaAs; (b) GaAsBi3%; (c) GaAsBi5%, (d) QDs density and height as a function of Bi molar fraction of the bottom GaAs1-xBix.
Fig. 3
Fig. 3 (a) Photoluminescence spectra measured at 77 K from QDs grown on GaAs, GaAsBi3% and GaAsBi5%, respectively; (b) bandgap diagram of the buried and the surface InAs QDs.
Fig. 4
Fig. 4 QDs with different thicknesses of capping layer: (a) no capping; (b) 4 ML GaAs:Bi capping; (c) 4 ML GaAs capping; (d) 16 ML GaAs:Bi capping; and (e) 16 ML GaAs capping.
Fig. 5
Fig. 5 PL spectra at 77 K of InAs QDs capped with 32 ML GaAsBi (red) and GaAs (black), respectively.

Metrics