Abstract

We theoretically and numerically demonstrate multi-spectral plasmon induced transparency (PIT) in three-dimensional metamaterials comprising of parallel nanorods and a vertical nanorod. By moving the vertical middle nanorod to break the structural symmetry, the structure presents single-spectral or dual-spectral PIT windows, while it exhibits multi-spectral PIT windows at the laser wavelengths with He-Ne, ruby Cr3+ and Kr, via moving the bottom nanorod. The quasi-static interaction model reveals that the near-field coupling strength between nanorods increases with the movement of the nanorod. The coupling strength between nanorods is enhanced, which makes vertical middle nanorod support dipole and quadrupole modes and further results in multi-spectral PIT by bright-dark mode coupling. This work provides a way to obtain multi-spectral PIT in an easily fabricable nanostructure, and it may achieve potential applications in a variety of fields including filters, sensing, and some other nanoplasmonic functional devices.

Full Article  |  PDF Article
OSA Recommended Articles
Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling

Masashi Miyata, Jumpei Hirohata, Yusuke Nagasaki, and Junichi Takahara
Opt. Express 22(10) 11399-11406 (2014)

Controlling the interaction between plasmon-induced transparency and guided mode resonance

Xiaolei Zhao, Cai Yuan, Yeyu Zhu, Xiangfeng Chen, and Lin Zhu
Opt. Express 25(24) 30043-30050 (2017)

Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings

Mingli Wan, Yueli Song, Liufang Zhang, and Fengqun Zhou
Opt. Express 23(21) 27361-27368 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
  3. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [PubMed]
  4. S. X. Xia, X. Zhai, Y. Huang, and et al.., “Graphene Surface Plasmons With Dielectric Metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [PubMed]
  6. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [PubMed]
  7. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
  8. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [PubMed]
  9. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [PubMed]
  10. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [PubMed]
  11. W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
    [PubMed]
  12. X. Liu, J. Gu, and et al.., “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).
  13. M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).
  14. X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).
  15. Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
    [PubMed]
  16. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [PubMed]
  17. K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
    [PubMed]
  18. A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19(23), 22607–22618 (2011).
    [PubMed]
  19. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
    [PubMed]
  20. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
    [PubMed]
  21. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
    [PubMed]
  22. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).
  23. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
    [PubMed]
  24. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [PubMed]
  25. J. D. Jackson"Classical Electrodynamics, Chap. 7," (1975).
  26. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052–3055 (2017).
    [PubMed]

2017 (3)

2016 (3)

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[PubMed]

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

2015 (1)

2013 (3)

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

2012 (1)

X. Liu, J. Gu, and et al.., “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).

2011 (3)

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19(23), 22607–22618 (2011).
[PubMed]

2010 (3)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[PubMed]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

2009 (3)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

1991 (1)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[PubMed]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[PubMed]

A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19(23), 22607–22618 (2011).
[PubMed]

Artar, A.

A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19(23), 22607–22618 (2011).
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[PubMed]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[PubMed]

Çetin, A. E.

Chowdhury, D. R.

Devi, K. M.

Dorfmüller, J.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

Esslinger, M.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Etrich, C.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Feng, T.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Fu, Y.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Gong, Q.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Gu, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

X. Liu, J. Gu, and et al.., “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Han, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Harris, S. E.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[PubMed]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

Ho, J. C.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Hu, X.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Huang, Y.

Hui, A.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[PubMed]

Jeppesen, C.

Jiang, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Kern, K.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Khunsin, W.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Kristensen, A.

Kumar, G.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

Li, H.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Li, J.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Liang, Z.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Lin, Q.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Liu, J. Q.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Liu, X.

X. Liu, J. Gu, and et al.., “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

Mortensen, N. A.

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Qin, M.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Rockstuhl, C.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

Sarma, A. K.

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Song, Y.

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

Sun, B.

Tian, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).

Turkmen, M.

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

Vogelgesang, R.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Wan, M.

Wang, L.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Wang, L. L.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Wen, S. C.

Xia, S.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Xia, S. X.

Xiao, S.

Yang, H.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Yang, X.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[PubMed]

A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19(23), 22607–22618 (2011).
[PubMed]

Yin, X.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Yip, S.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Zhai, X.

Zhang, B.

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

Zhang, J.

Zhang, L.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Zhang, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Zhou, F.

Zhu, Y.

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

ACS Nano (1)

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[PubMed]

Angew. Chem. Int. Ed. Engl. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[PubMed]

Appl. Phys. Lett. (2)

X. Liu, J. Gu, and et al.., “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100, 131101 (2012).

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103, 021115 (2013).

EPL (1)

M. Qin, X. Zhai, L. Wang, H. Li, S. Xia, Q. Lin, and B. Zhang, “Double Fano resonances excited in a compact structure by introducing a defect,” EPL 114, 57006 (2016).

J. Lightwave Technol. (1)

Nano Lett. (3)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[PubMed]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703 (1955).

Phys. Rev. B (1)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).

Phys. Rev. Lett. (3)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Sci. Rep. (1)

Y. Zhu, X. Hu, Y. Fu, H. Yang, and Q. Gong, “Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range,” Sci. Rep. 3, 2338 (2013).
[PubMed]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[PubMed]

Other (1)

J. D. Jackson"Classical Electrodynamics, Chap. 7," (1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the proposed structure (the silver nanorods 3 and 4 coincide, denoted as Δz = 0 nm) (b) Δz ≠ 0 nm. (c) Schematic diagram of the plasmonic PIT structure with definitions of the geometrical parameters: The width of nanorods in the y direction is 40 nm, l1 = l2 = l3 = l4 = 140 nm, d = 20 nm, h1 = h3 = h4 = 20 nm, h2 = 40 nm. The upper, middle vertical silver bar, lower and bottom silver bar are described as silver nanorod 1, 2, 3 and 4, respectively.
Fig. 2
Fig. 2 (a)-(c) Simulated PIT transmission spectra for proposed structure (Δz = 0 nm) in dependence of lateral displacement Δx. I and II corresponds to two dips, respectively. (d)-(f) Field distributions Ey of the transmission peak and dips of the Δx = 16 nm transmission spectrum. The distribution Ey at the wavelength of 674 nm in (d), 704 nm in (e), and 735 nm in (f).
Fig. 3
Fig. 3 The Interaction of the dipole moment between parallel nanorods and vertical nanorod, where anti-parallel dipoles p 1 and p 2 represent the electric quadrupole moment and p 3 denotes the electric dipole moment. The quasi-static interaction model is drawn based on the distribution Ey of dip II in PIT transmission spectra.
Fig. 4
Fig. 4 (a)-(c) Simulated PIT transmission spectra in dependence of lateral displacement Δxz = 0 nm). (d)-(e) Field distributions Ey of the two transmission peaks in the transmission spectrum (Δx = 42 nm).
Fig. 5
Fig. 5 (a) Simulated multi-spectral PIT (Δz = 36 nm, Δx = 50 nm). III, IV and V correspond to three transparent peaks (λ = 632 nm, 694 nm, and 753 nm). (b)-(d) Field distributions Ey of three transmission peaks in the transmission spectrum.

Metrics