Abstract

Laser dyes, in particular, rhodamine 6G (R6G), play an important role in many proof-of-principle demonstrations in metamaterials, nanophotonics, plasmonics, and strong coupling. Despite the numerous experimental and theoretical studies, interpretation of many features in optical spectra of high-concentrated R6G dye is still a subject of controversy. In this work, we have measured and interpreted absorption, excitation, and emission spectra of polymeric (PMMA) films doped with R6G dye. In contrast to several reports, our results suggest that the ~495 nm shoulder in the absorption spectrum is chiefly not due to a dimer formation, but is likely owing to vibronic transitions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic studies of dye-doped porous alumina membranes

C. On, E. K. Tanyi, M. Pashchanka, J. R. Skuza, V. N. Peters, and M. A. Noginov
J. Opt. Soc. Am. B 35(8) 1785-1790 (2018)

Optical properties of cooled Rhodamine B in ethanol

M. A. Ali, J. Moghaddasi, and S. A. Ahmed
J. Opt. Soc. Am. B 8(9) 1807-1810 (1991)

Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour
Appl. Opt. 53(24) 5398-5409 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
    [PubMed]
  2. A. P. F. Turner, “Tech.Sight. Biochemistry. Biosensors--Sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
    [PubMed]
  3. M. Grätzel, “Photoelectrochemical Cells,” Nature 414(6861), 338–344 (2001).
    [PubMed]
  4. A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  5. J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [PubMed]
  6. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
    [PubMed]
  7. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [PubMed]
  8. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [PubMed]
  11. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
    [PubMed]
  12. M. Kasha, “Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates,” Radiat. Res. 20(1), 55–70 (1963).
    [PubMed]
  13. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).
  14. J. E. Selwyn and J. I. Steinfeld, “Aggregation Equilibria of Xanthene Dyes,” J. Phys. Chem. 76(5), 762–774 (1972).
  15. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).
  16. P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).
  17. O. Svelto, Principles of Lasers (Springer, 2010).
  18. L. J. Radziewski, R. W. Solarz, and J. A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, 1987).
  19. M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).
  20. Exciton product sheet, “Rhodamine 590,” http://exciton.com/pdfs/RH590.pdf .
  21. ChemNet, “Density of Rhodamine 6G (C27H29ClN2O3),” http://www.chemnet.com/cas/en/113162-02-0/O-(4-chlorobenzoyl)hydroquinidine.html.
  22. J. E. Mark, Physical Properties of Polymers Handbook (Springer, 2007).
  23. E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).
  24. W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).
  25. F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).
  26. M. V. Klein and T. E. Furtak, Optics (Wiley, 1986).
  27. H. Kroemer, Quantum Mechanics for Engineering, Materials Science, and Applied Physics (Prentice-Hall, 1994).

2017 (2)

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

2016 (1)

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

2011 (1)

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

2009 (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).

2008 (1)

2006 (1)

2005 (1)

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[PubMed]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[PubMed]

2001 (1)

M. Grätzel, “Photoelectrochemical Cells,” Nature 414(6861), 338–344 (2001).
[PubMed]

2000 (1)

A. P. F. Turner, “Tech.Sight. Biochemistry. Biosensors--Sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[PubMed]

1989 (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

1987 (1)

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

1978 (1)

W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).

1972 (1)

J. E. Selwyn and J. I. Steinfeld, “Aggregation Equilibria of Xanthene Dyes,” J. Phys. Chem. 76(5), 762–774 (1972).

1965 (1)

M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).

1963 (1)

M. Kasha, “Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates,” Radiat. Res. 20(1), 55–70 (1963).
[PubMed]

Adegoke, J.

Adegoke, J. A.

Alhasani, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Ashraf El-Bayoumi, M.

M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).

Bahoura, M.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[PubMed]

Biris, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Brown, N.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).

Chakrapani, G.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Chapman, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Cheng, T.

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Demkovich, P. A.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Drachev, V. P.

Eberly, J. H.

W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).

Elman, J. F.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[PubMed]

Euler, W. B.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Galanzha, E. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

George, M. C.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[PubMed]

Grätzel, M.

M. Grätzel, “Photoelectrochemical Cells,” Nature 414(6861), 338–344 (2001).
[PubMed]

Harrington, W.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Jagannath, H.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Kasha, M.

M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).

M. Kasha, “Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates,” Radiat. Res. 20(1), 55–70 (1963).
[PubMed]

Koutsares, S.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

Kuchyanov, A. S.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Luo, S.

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Marchetti, A. P.

W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).

Mayy, M.

McColgin, W. C.

W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).

Miahnahri, A.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Mullen, M.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Nedosekin, D. A.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Nima, Z.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Noginov, M. A.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[PubMed]

Nolan, J.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Novoa-Ortega, E.

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Parkhomenko, R. G.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Plekhanov, A. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Podolskiy, V. A.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[PubMed]

Rao, Y. V.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Rawls, H. R.

M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).

Reynolds, K.

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).

Ritzo, B. A.

Sarimollaoglu, M.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[PubMed]

Selwyn, J. E.

J. E. Selwyn and J. I. Steinfeld, “Aggregation Equilibria of Xanthene Dyes,” J. Phys. Chem. 76(5), 762–774 (1972).

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006).
[PubMed]

Shi, C.

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

Small, C. E.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Steinfeld, J. I.

J. E. Selwyn and J. I. Steinfeld, “Aggregation Equilibria of Xanthene Dyes,” J. Phys. Chem. 76(5), 762–774 (1972).

Stockman, M. I.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Su, Y.

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

Sudarkin, A. N.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Tanyi, E. K.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

Thuman, H.

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

Turner, A. P. F.

A. P. F. Turner, “Tech.Sight. Biochemistry. Biosensors--Sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[PubMed]

Venkateswarlu, P.

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Watanabe, F.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Weingold, R.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Zhang, E.

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Zharov, V. P.

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Zhu, G.

Adv. Opt. Mat. (1)

E. K. Tanyi, H. Thuman, N. Brown, S. Koutsares, V. A. Podolskiy, and M. A. Noginov, “Control of the Stokes Shift with Strong Coupling,” Adv. Opt. Mat. 5(9), 1600941 (2017).

Biomaterials (1)

S. Luo, E. Zhang, Y. Su, T. Cheng, and C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[PubMed]

J. Am. Chem. Soc. (1)

W. C. McColgin, A. P. Marchetti, and J. H. Eberly, “The nature of solution spectra. Inhomogeneous broadening and phonon effects in frozen solutions,” J. Am. Chem. Soc. 100(18), 5622–5626 (1978).

J. Phys. Chem. (1)

J. E. Selwyn and J. I. Steinfeld, “Aggregation Equilibria of Xanthene Dyes,” J. Phys. Chem. 76(5), 762–774 (1972).

J. Phys. Chem. C (1)

M. Chapman, M. Mullen, E. Novoa-Ortega, M. Alhasani, J. F. Elman, and W. B. Euler, “Structural Evolution of Ultrathin Films of Rhodamine 6G on Glass,” J. Phys. Chem. C 120(15), 8289–8297 (2016).

Nat. Commun. (1)

E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).
[PubMed]

Nature (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

M. Grätzel, “Photoelectrochemical Cells,” Nature 414(6861), 338–344 (2001).
[PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B – Condens. Matter Mater. Phys. 79(24), 241404 (2009).

Phys. Rev. Lett. (2)

J. Seidel, S. Grafström, and L. Eng, “Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[PubMed]

Pramana - J. Phys. (1)

P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in Rhodamine 6G,” Pramana - J. Phys. 28(1), 59–71 (1987).

Pure Appl. Chem. (1)

M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, “The exciton model in molecular spectroscopy,” Pure Appl. Chem. 11(3–4), 371–392 (1965).

Radiat. Res. (1)

M. Kasha, “Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates,” Radiat. Res. 20(1), 55–70 (1963).
[PubMed]

Science (1)

A. P. F. Turner, “Tech.Sight. Biochemistry. Biosensors--Sense and sensitivity,” Science 290(5495), 1315–1317 (2000).
[PubMed]

Sov. Phys. Tech. Phys. (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Other (8)

O. Svelto, Principles of Lasers (Springer, 2010).

L. J. Radziewski, R. W. Solarz, and J. A. Paisner, Laser Spectroscopy and its Applications (Marcel Dekker, 1987).

Exciton product sheet, “Rhodamine 590,” http://exciton.com/pdfs/RH590.pdf .

ChemNet, “Density of Rhodamine 6G (C27H29ClN2O3),” http://www.chemnet.com/cas/en/113162-02-0/O-(4-chlorobenzoyl)hydroquinidine.html.

J. E. Mark, Physical Properties of Polymers Handbook (Springer, 2007).

F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).

M. V. Klein and T. E. Furtak, Optics (Wiley, 1986).

H. Kroemer, Quantum Mechanics for Engineering, Materials Science, and Applied Physics (Prentice-Hall, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption spectra of R6G:PMMA films. Trace 1 – experiment; trace 2 – fit with the sum of two Gaussian functions, traces 3 and 4 – Gaussian functions corresponding to the main peak and the shoulder, respectively. (a) c = 2.2x10−4 mol/L, (b) c = 6.7x10−1 mol/L, (c) c = 8.9x10−1 mol/L.
Fig. 2
Fig. 2 (a) Concentration dependence of the area under the Gaussian bands, representing the main peak (red circles) and the shoulder (blue squares) of the absorption spectrum (blue squares). (b) Dependence of the concentration of monomers (red trace) and dimers (blue trace) on the total concentration of molecules, predicted by the aggregation/dissociation model. The slopes of the curves at low and high molecular concentrations are shown in the figure.
Fig. 3
Fig. 3 Emission and excitation spectra of R6G:PMMA: (a) c = 2.2x10−3 mol/L. Trace 1 – experimental emission spectrum; trace 2 – its fit with the sum of two Gaussian functions, traces 3 and 4 – Gaussian functions corresponding to the main peak and the shoulder of the emission band. Trace 1’ – experimental excitation spectrum; trace 2’ – its fit with the sum of two Gaussian functions; traces 3′ and 4’ – Gaussian functions corresponding to the main peak and the shoulder of the excitation band. (b) c = 6.7x10−1 mol/L. Traces 1,2-4 and 3′,4’: same as in Fig. 3(a). Emission spectra 1, 5 and 6 were collected when the samples were excited at 400 nm, 485 nm and 530 nm, respectively. Excitation spectra 7, 9 and 10 were collected when the emission was collected at 606 nm, 555 nm and 620 nm, respectively. Trace 8 – fit of trace 7 with the sum of two Gaussian functions.
Fig. 4
Fig. 4 Comparison of the excitation and the absorbance spectra: Trace 1 – experimental excitation spectrum, trace 2 – its fit with the sum of two Gaussian functions, traces 3 and 4 – Gaussian functions corresponding to the main peak and the shoulder, respectively, trace 5 – experimental absorbance spectrum (a) c = 2.2x10−4 mol/L, (b) 6.7x10−1 mol/L. Insets: zoomed maxima of the excitation and absorbance bands.
Fig. 5
Fig. 5 Normalized absorbance spectrum (trace 1), scaled excitation spectrum (trace 2), and their difference (trace 3), suggest that the molecules excited close to the long-wavelength edge of the absorption spectrum contribute to spontaneous emission less than the molecules excited close to the short-wavelength edge of the absorption spectrum. (a) c = 2.2x10−3 mol/L, (b) c = 6.7x10−1 mol/L.
Fig. 6
Fig. 6 Energy level diagram of coupled molecules (the configuration coordinate is plotted on the horizontal axis). Parabola S0 represents the ground state. Parabola S1 represents the first excited state of uncoupled molecules. Parabolas S1- and S1+ represent the two branches of the split excited state of the strongly coupled molecules. The transition | 2P| 3P is parity forbidden. Correspondingly, the molecules excited at the transition | 1| 2P do not emit. This explains the shift between the absorption and excitation bands observed in our experiment. (Adopted and modified from Ref [23].).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k= n 2 /m ,
2m+n=N,
n= 8( N k )+1 1 ( 4 k ) ,
m= n 2 /k ,

Metrics