Abstract

A sample of Fe:ZnSe fabricated by post-growth thermal diffusion was purchased commercially. The sample was cooled to 80 K using liquid nitrogen and used as the gain element in a Watt-class continuous-wave laser with an output wavelength centered at 4050 nm. The sample was removed from the laser and treated using a hot isostatic press (HIP) technique. The crystal was then re-placed in the laser resonator. After the HIP treatment, and with no other changes to the laser resonator, the slope efficiency of the laser increased by 1.5×. The spectral output was red-shifted to 4122 nm and the output linewidth was narrowed by nearly two orders of magnitude, resulting in a 36× increase in power spectral density. The shift in wavelength and the increase in power scaling performance is consistent with the activation of previously inactive iron impurities in the sample by the HIP treatment.

Full Article  |  PDF Article
OSA Recommended Articles
Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals

Ronald W. Stites, Sean A. McDaniel, Jacob O. Barnes, Douglas M. Krein, John H. Goldsmith, Shekhar Guha, and Gary Cook
Opt. Mater. Express 6(10) 3339-3353 (2016)

Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing

Ozarfar Gafarov, Alan Martinez, Vladimir Fedorov, and Sergey Mirov
Opt. Mater. Express 7(1) 25-31 (2017)

Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns

Jonathan W. Evans, Brian D. Dolasinski, Thomas R. Harris, Justin W. Cleary, and Patrick A. Berry
Opt. Mater. Express 7(3) 860-867 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. L. E. Myers, W. Bosenberg, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [Crossref] [PubMed]
  3. E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.
  4. R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D
  5. T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
    [Crossref]
  6. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18, 15062–15072 (2010).
    [Crossref] [PubMed]
  7. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, “Mode-locked Cr2+:ZnSe laser,” Opt. Lett. 25, 168–170 (2000).
    [Crossref]
  8. J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
    [Crossref]
  9. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
    [Crossref]
  10. M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
    [Crossref]
  11. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
    [Crossref]
  12. V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).
  13. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0 – 4.5-μm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24, 1720–1722 (1999).
    [Crossref]
  14. J. W. Evans, B. D. Dolasinski, T. R. Harris, J. W. Cleary, and P. A. Berry, “Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns,” Opt. Mater. Express 7, 860–867 (2017).
    [Crossref]
  15. V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
    [Crossref]
  16. N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36, 94–96 (2011).
    [Crossref] [PubMed]
  17. J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
    [Crossref]
  18. J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
    [Crossref]
  19. H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).
  20. D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.
  21. J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
    [Crossref]
  22. R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
    [Crossref]
  23. S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).
  24. S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).
  25. J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
    [Crossref]
  26. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
    [Crossref]
  27. W. W. Rigrod, “Saturation Effects in High-Gain Lasers,” Journal of Applied Physics 36, 2487–2490 (1965).
    [Crossref]

2017 (4)

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

J. W. Evans, B. D. Dolasinski, T. R. Harris, J. W. Cleary, and P. A. Berry, “Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns,” Opt. Mater. Express 7, 860–867 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
[Crossref]

2016 (2)

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

2015 (2)

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

2014 (1)

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

2013 (2)

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
[Crossref]

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

2012 (1)

2011 (1)

2010 (1)

2008 (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

2006 (1)

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

2005 (1)

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

2000 (1)

1999 (1)

1996 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1972 (1)

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

1965 (1)

W. W. Rigrod, “Saturation Effects in High-Gain Lasers,” Journal of Applied Physics 36, 2487–2490 (1965).
[Crossref]

Adams, J. J.

Akimov, V.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Badikov, D.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Barnes, J. O.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

Basiev, T. T.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Beecher, S. J.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

Berg, J.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Berry, P. A.

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

J. W. Evans, B. D. Dolasinski, T. R. Harris, J. W. Cleary, and P. A. Berry, “Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns,” Opt. Mater. Express 7, 860–867 (2017).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18, 15062–15072 (2010).
[Crossref] [PubMed]

Bibeau, C.

Bliss, D.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D

Bosenberg, W.

L. E. Myers, W. Bosenberg, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref] [PubMed]

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Byer, R. L.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Carrig, T. J.

Cheung, E.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cleary, J. W.

Cook, G.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Dienes, A.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Dolasinski, B. D.

Doroshenko, M. E.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Eckardt, R. C.

Evans, J. W.

J. W. Evans, B. D. Dolasinski, T. R. Harris, J. W. Cleary, and P. A. Berry, “Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns,” Opt. Mater. Express 7, 860–867 (2017).
[Crossref]

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Fedorov, V.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Fedorov, V. V.

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36, 94–96 (2011).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Fejer, M. M.

Frolov, M.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Frolov, M. P.

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Furu, L. H.

Galagan, B. I.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Gallian, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Gapontsev, V.

Gerasimenko, A. S.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Goldsmith, J.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

Goldsmith, J. H.

Guha, S.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

Harris, T. R.

J. W. Evans, B. D. Dolasinski, T. R. Harris, J. W. Cleary, and P. A. Berry, “Demonstration and power scaling of an Fe:CdMnTe laser at 5.2 microns,” Opt. Mater. Express 7, 860–867 (2017).
[Crossref]

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

Hilyard, R.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Ho, J.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Hoefer, C.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Injeyan, H.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Ippen, E.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Jelínek, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Jelínková, H.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Jeong, J. Y.

Kar, A. K.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Kogelnik, H.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Komar, V. K.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Komine, H.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Korostelin, Y.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Korostelin, Y. V.

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Kovalenko, N. O.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Kozlovskii, V. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Kozlovsky, V.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Kozlovsky, V. I.

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

Krein, D. M.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

Krol, D. M.

Kubecek, V.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Lancaster, A.

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Landman, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Landman, A. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Lynch, C.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D

Macdonald, J. R.

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

Martyshkin, D. V.

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36, 94–96 (2011).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

McDaniel, S. A.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Mirov, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
[Crossref]

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Mirov, S. B.

N. Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36, 94–96 (2011).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Myers, L. E.

Myoung, N.

Nemec, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Osiko, V. V.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Page, R. H.

Palese, S.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Payne, S. A.

Peterson, R. D.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D

Podmar’kov, Y.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Podmar’kov, Y. P.

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Podmarkov, Y. P.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

Pollock, C. R.

Puzikov, V. M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Reddy, B. R.

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

Rigrod, W. W.

W. W. Rigrod, “Saturation Effects in High-Gain Lasers,” Journal of Applied Physics 36, 2487–2490 (1965).
[Crossref]

Savinova, S. A.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

Schepler, K. L.

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
[Crossref]

P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18, 15062–15072 (2010).
[Crossref] [PubMed]

Sennaroglu, A.

Shank, C.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Skasyrskii, Y. K.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Skasyrsky, Y. K.

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

Smolski, V.

Stites, R. W.

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
[Crossref]

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Šulc, J.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Sverchkov, S. E.

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Thorburn, F.

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Tomich, D. H.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D

Vasilyev, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe,” Opt. Mater. Express 7, 2636–2650 (2017).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Voronov, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Voronov, A. A.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Vyhlídal, D.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Wagner, G. J.

Zagoruiko, Y. A.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

Journal of Applied Physics (1)

W. W. Rigrod, “Saturation Effects in High-Gain Lasers,” Journal of Applied Physics 36, 2487–2490 (1965).
[Crossref]

Journal of Luminescence (1)

J. W. Evans, T. R. Harris, B. R. Reddy, K. L. Schepler, and P. A. Berry, “Optical spectroscopy and modeling of Fe2+ ions in zinc selenide,” Journal of Luminescence 188, 541–550 (2017).
[Crossref]

Journal of Physics: Conference Series (1)

V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results,” Journal of Physics: Conference Series 740, 012006 (2016).

Laser Physics Letters (2)

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmarkov, S. A. Savinova, and Y. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Physics Letters 12, 055001 (2015).
[Crossref]

T. T. Basiev, M. E. Doroshenko, V. V. Osiko, S. E. Sverchkov, and B. I. Galagan, “New mid-IR (1.5 – 2.2 μm) Raman lasers based on barium tungstate and barium nitrate crystals,” Laser Physics Letters 2, 237 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. Express (3)

Proc. SPIE (3)

S. A. McDaniel, P. A. Berry, K. L. Schepler, J. R. Macdonald, S. J. Beecher, and A. K. Kar, “Gain-switched operation of ultrafast laser inscribed waveguides in Cr:ZnSe,” Proc. SPIE 9342, 93420E (2015).

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” Proc. SPIE 8599, 85990E(2013).

J. O. Barnes, R. W. Stites, G. Cook, S. A. McDaniel, D. M. Krein, S. Guha, and J. Goldsmith, “Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP),” Proc. SPIE 10192, 101920A (2017).
[Crossref]

Proceedings of SPIE (1)

J. W. Evans, P. A. Berry, and K. L. Schepler, “A broadly tunable continuous-wave Fe:ZnSe laser,” Proceedings of SPIE 8599, 85990 (2013).
[Crossref]

Quantum Electronics (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Quantum Electronics, IEEE Journal of (3)

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77 – 5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Other (4)

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8 – 4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

S. A. McDaniel, A. Lancaster, R. W. Stites, F. Thorburn, A. K. Kar, and G. Cook, “Cr:ZnSe guided wave lasers and materials,” Proc. SPIE, Volume 10082, 10082D (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The corrected absorption and emission cross-sections of an Fe:ZnSe sample at 80 K.
Fig. 2
Fig. 2 The experimental configuration of the Fe:ZnSe laser. All optics were made of CaF2.
Fig. 3
Fig. 3 The slope-efficiency of the laser before (blue triangles) and after (red circles) the Fe:ZnSe sample was HIP treated. The threshold values were extrapolated because the pump laser could not be operated at lower powers without becoming unstable. Error bars are smaller than the data markers.
Fig. 4
Fig. 4 The spectral power density of the Fe:ZnSe before (blue) and after (red) the sample was HIP treated. The two curves are also inset and rescaled for clarity. The linewidth measurements were recorded at approximately 5× the lasing threshold power in each case.
Fig. 5
Fig. 5 The spectral absorption coefficient of two types of Fe:ZnSe at 11.5 K. The inset shows two smaller absorption features in more detail. Note that the Γ5 → γ1 transition line of the HIP sample is saturated and the plots are normalized to the Γ5 → γ4 transition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ em ( λ ) = λ 5 I f ( λ ) 8 π c n 2 τ rad λ I f ( λ ) d λ
σ abs ( ν ) = G 2 G 1 I a ( ν ) I a ( ν ) d ν σ em ( ν ) d ν

Metrics