Abstract

Employing an acousto-optic modulator (AOM), the Q-switched laser characteristics of a Tm,Y:CaF2 crystal have been investigated. With T = 1%, 2% and 5% output couplers (OCs), output laser performance in both continuous-wave (CW) and Q-switching regimes have been presented and are discussed in details. The AOM Q-switched Tm,Y:CaF2 laser can run at high repetition rates ranging from 1 kHz to 10 kHz. Under the modulation frequency of 1 kHz, pulses with the shortest duration of 280 ns and the maximum pulse energy of 0.335 mJ have been delivered, corresponding to a maximum peak power of 1.19 kW. The results indicate that Tm,Y:CaF2 crystals can act as a promising candidate of gain medium for pulsed 2 μm laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser

T. Feng, K. Yang, S. Zhao, J. Zhao, W. Qiao, T. Li, L. Zheng, and J. Xu
Appl. Opt. 53(27) 6119-6122 (2014)

Spectroscopic characteristics, continuous-wave and mode-locking laser performances of Tm,Y:CaF2 disordered crystal

Lingchen Kong, Zhen Qiao, Guoqiang Xie, Zhipeng Qin, Beibei Zhao, Hao Yu, Liangbi Su, Jingui Ma, Peng Yuan, and Liejia Qian
Opt. Express 25(18) 21267-21274 (2017)

Ho:CaF2 solid-state saturable-absorber Q switch for the 2-μm Tm,Cr:Y3Al5O12 laser

Yen-Kuang Kuo, Milton Birnbaum, Ferruh Unlu, and Man-Fang Huang
Appl. Opt. 35(15) 2576-2579 (1996)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
    [PubMed]
  2. T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
    [PubMed]
  3. J.-B. Ghibaudo, J.-Y. Labandibar, E. Armandillo, and C. J. Norrie, “2-μm space lidar for water vapor and wind measurements,” Satellite Remote Sensing III. International Society for Optics and Photonics, 47–54 (1997).
  4. A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
    [PubMed]
  5. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 µm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008).
    [PubMed]
  6. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
  7. D. D. Lowenthal, “2-um optical parametric sources,” Solid State Lasers IV 1864, 190–199 (1993).
  8. R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).
  9. C. D. Nabors, “Q-switched operation of quasi-three-level lasers,” IEEE J. Quantum Electron. 30(12), 2896–2901 (1994).
  10. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28(12), 2692–2697 (1992).
  11. J. Ganem and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Res. Lett. 8(1), 455 (2013).
    [PubMed]
  12. V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).
  13. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).
  14. P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).
  15. A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).
  16. P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).
  17. X. Liu, K. Yang, S. Zhao, T. Li, C. Luan, X. Guo, B. Zhao, L. Zheng, L. Su, J. Xu, and J. Bian, “Growth and lasing performance of a Tm,Y:CaF2 crystal,” Opt. Lett. 42(13), 2567–2570 (2017).
    [PubMed]
  18. P. J. M. Suni and S. W. Henderson, “1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser,” Opt. Lett. 16(11), 817–819 (1991).
    [PubMed]
  19. J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

2017 (1)

2016 (1)

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

2013 (2)

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

J. Ganem and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Res. Lett. 8(1), 455 (2013).
[PubMed]

2012 (2)

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

2010 (1)

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

2009 (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).

2008 (1)

2004 (3)

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
[PubMed]

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

2001 (1)

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

2000 (1)

1994 (1)

C. D. Nabors, “Q-switched operation of quasi-three-level lasers,” IEEE J. Quantum Electron. 30(12), 2896–2901 (1994).

1993 (1)

D. D. Lowenthal, “2-um optical parametric sources,” Solid State Lasers IV 1864, 190–199 (1993).

1992 (1)

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28(12), 2692–2697 (1992).

1991 (1)

Amzajerdian, F.

Barnes, B. W.

Belyaev, A. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Beyon, J. Y.

Bian, J.

Bilici, T.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Bowman, S. R.

J. Ganem and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Res. Lett. 8(1), 455 (2013).
[PubMed]

Braud, A.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Budni, P. A.

Camy, P.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Chabushkin, A. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Chen, D.

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

Chicklis, E. P.

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).

Creeden, D.

Davis, R. E.

Doualan, J. L.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Doualan, J.-L.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

Fan, T. Y.

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28(12), 2692–2697 (1992).

Fedorov, P. P.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Ganem, J.

J. Ganem and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Res. Lett. 8(1), 455 (2013).
[PubMed]

Garibin, E. A.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Gülsoy, M.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Guo, X.

Gusev, P. E.

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Henderson, S. W.

Ismail, S.

Jiang, M.

Kalaycioglu, H.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Kavaya, M. J.

Ketteridge, P. A.

Khrushchalina, S. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Koch, G. J.

Kruglova, M. V.

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Krutov, M. A.

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Kurt, A.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Kuznetsova, O. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Lam, Y.-L.

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

Lemons, M. L.

Li, T.

Li, X.

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

Liu, J.

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

Liu, X.

Lowenthal, D. D.

D. D. Lowenthal, “2-um optical parametric sources,” Solid State Lasers IV 1864, 190–199 (1993).

Luan, C.

Lyapin, A. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Malov, A. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

McCarthy, J. C.

Ménard, V.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Miller, C. A.

Moncorgé, R.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Mosto, J. R.

Nabors, C. D.

C. D. Nabors, “Q-switched operation of quasi-three-level lasers,” IEEE J. Quantum Electron. 30(12), 2896–2901 (1994).

Osiko, V. V.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Petit, V.

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

Petros, M.

Pollak, T. M.

Pomeranz, L. A.

Renard, S.

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Romanov, K. N.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Ryaabochkina, P. A.

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Ryabochkina, P. A.

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

Sakharov, N. V.

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Schunemann, P. G.

Sennaroglu, A.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Setzler, S. D.

Shen, D.

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

Singh, U. N.

Su, L.

Suni, P. J. M.

Tabakoglu, H. Ö.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Tam, S.-C.

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).

Tonelli, M.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).

Topaloglu, N.

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

Ushakov, S. N.

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Vay, S.

Xu, J.

Yan, R.

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

Yang, K.

Young, Y. E.

Yu, J.

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
[PubMed]

Yu, X.

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

Zawilski, K.

Zhao, B.

Zhao, S.

Zheng, L.

Appl. Opt. (1)

Appl. Phys. B (2)

R. Yan, X. Yu, X. Li, D. Chen, and J. Yu, “Theoretical and experimental investigation of actively Q-switched Nd: YAG 946 nm laser with considering ETU effects,” Appl. Phys. B 108(3), 591–596 (2012).

V. Petit, P. Camy, J.-L. Doualan, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78(6), 681–684 (2004).

IEEE J. Quantum Electron. (3)

J. Liu, D. Shen, S.-C. Tam, and Y.-L. Lam, “Modeling pulse shape of Q-switched lasers,” IEEE J. Quantum Electron. 37(7), 888–896 (2001).

C. D. Nabors, “Q-switched operation of quasi-three-level lasers,” IEEE J. Quantum Electron. 30(12), 2896–2901 (1994).

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28(12), 2692–2697 (1992).

J. Biomed. Opt. (1)

T. Bilici, H. Ö. Tabakoğlu, N. Topaloğlu, H. Kalaycioğlu, A. Kurt, A. Sennaroglu, and M. Gülsoy, “Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding,” J. Biomed. Opt. 15(3), 038001 (2010).
[PubMed]

J. Opt. Soc. Am. B (1)

Lasers Med. Sci. (1)

A. N. Belyaev, A. N. Chabushkin, S. A. Khrushchalina, O. A. Kuznetsova, A. A. Lyapin, K. N. Romanov, and P. A. Ryabochkina, “Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation,” Lasers Med. Sci. 31(3), 503–510 (2016).
[PubMed]

Nanoscale Res. Lett. (1)

J. Ganem and S. R. Bowman, “Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources,” Nanoscale Res. Lett. 8(1), 455 (2013).
[PubMed]

Opt. Commun. (1)

P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, “Tm3+: CaF2 for 1.9 μm laser operation,” Opt. Commun. 236(4), 395–402 (2004).

Opt. Lett. (3)

Opt. Mater. (1)

A. A. Lyapin, P. P. Fedorov, E. A. Garibin, A. V. Malov, V. V. Osiko, P. A. Ryabochkina, and S. N. Ushakov, “Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials,” Opt. Mater. 35(10), 1859–1864 (2013).

Prog. Quantum Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33(2), 61–109 (2009).

Quantum Electron. (1)

P. A. Ryaabochkina, A. A. Lyapin, V. V. Osiko, P. P. Fedorov, S. N. Ushakov, M. V. Kruglova, N. V. Sakharov, E. A. Garibin, P. E. Gusev, and M. A. Krutov, “Structural Spectral-luminescent, and lasing properties of nanostructured Tm:CaF2 ceramics,” Quantum Electron. 42(9), 853–857 (2012).

Solid State Lasers IV (1)

D. D. Lowenthal, “2-um optical parametric sources,” Solid State Lasers IV 1864, 190–199 (1993).

Other (1)

J.-B. Ghibaudo, J.-Y. Labandibar, E. Armandillo, and C. J. Norrie, “2-μm space lidar for water vapor and wind measurements,” Satellite Remote Sensing III. International Society for Optics and Photonics, 47–54 (1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the actively Q-switched Tm,Y:CaF2 laser.
Fig. 2
Fig. 2 (a) Average output powers versus absorbed pump powers in CW regime. (b) Comparison of power performance with static AOM inserted in and not
Fig. 3
Fig. 3 The dependence of average output powers on absorbed pump powers under different PRFs.
Fig. 4
Fig. 4 The dependences of (a) pulse durations, (b) pulse energies and (c) peak powers on PRFs at the maximum absorbed pump power in cases of T = 1%, 2% and 5% OCs.
Fig. 5
Fig. 5 Temporal pulse profiles generated by acoustic-optically Q-switched Tm,Y:CaF2 laser.
Fig. 6
Fig. 6 Output spectra in different operation regimes of Tm,Y:CaF2 laser.
Fig. 7
Fig. 7 M2 factors of the acoustic-optically Q-switched Tm,Y:CaF2 laser under a PRF of 1 kHz at the maximum output power.

Metrics