Abstract

Er3+-doped CeO2-SiO2 nanocomposite was successfully fabricated by a sol-gel route. The homogeneous distribution of CeO2 nanocrystals among amorphous silica matrix was evidenced by the X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The incorporation of Er3+ ions into CeO2 nanocrystals was revealed by emission spectra and luminescence decay curves. Increasing CeO2 content and raising annealing temperature lead to the enhancement of the 1532 nm Er3+ emission, because CeO2 nanocrystals can efficiently sensitize the emission of Er3+, provide a low phonon energy environment, and defend them from hydroxyl quenching. It is expected that the investigated nanocomposite might be a promising candidate for optical fiber communication.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared luminescence of Nd3+ and Tm3+ ions doped ZnO nanocrystals

Yongsheng Liu, Wenqin Luo, Renfu Li, Haomiao Zhu, and Xueyuan Chen
Opt. Express 17(12) 9748-9753 (2009)

Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals

Yangqing Wu, Shaobing Lin, Jingjing Liu, Yang Ji, Jun Xu, Ling Xu, and Kunji Chen
Opt. Express 25(19) 22648-22657 (2017)

Valence states of europium in CaAl2O4:Eu phosphors

Nursen Avci, Katleen Korthout, Mark A. Newton, Philippe F. Smet, and Dirk Poelman
Opt. Mater. Express 2(3) 321-330 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Garai and B. Karmakar, “Rare earth ion controlled crystallization of mica glass-ceramics,” J. Alloys Compd. 678(9), 360–369 (2016).
    [Crossref]
  2. C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
    [Crossref]
  3. J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
    [Crossref]
  4. X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
    [Crossref]
  5. T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
    [Crossref]
  6. S. Fujiharaa and M. Oikawa, “Structure and luminescent properties of CeO2: rare earth (RE=Eu3+ and Sm3+) thin films,” J. Appl. Phys. 95(12), 8002–8006 (2004).
    [Crossref]
  7. D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
    [Crossref]
  8. J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
    [Crossref] [PubMed]
  9. H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
    [Crossref]
  10. X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
    [Crossref] [PubMed]
  11. S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
    [Crossref] [PubMed]
  12. F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
    [Crossref]
  13. T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
    [Crossref]
  14. L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
    [Crossref]
  15. T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
    [Crossref]
  16. P. J. Hyun and D. J. Min, “H, S, Song, “FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2CaF2 slags,” Transactions of the Iron & Steel Institute of Japan 42(4), 344–351 (2002).
    [Crossref]
  17. I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
    [Crossref]
  18. Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
    [Crossref]
  19. J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
    [Crossref]
  20. Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
    [Crossref]
  21. S. Brovelli, A. Chiodini, A. Lauria, F, Meinardi, and A, Paleari, “Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica,” Physical Review B 73 (73), 07340 (2006).

2016 (3)

M. Garai and B. Karmakar, “Rare earth ion controlled crystallization of mica glass-ceramics,” J. Alloys Compd. 678(9), 360–369 (2016).
[Crossref]

X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
[Crossref]

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

2015 (4)

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

2014 (1)

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

2013 (1)

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

2012 (2)

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

2011 (1)

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

2010 (1)

H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
[Crossref]

2009 (2)

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

2006 (1)

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

2005 (1)

I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
[Crossref]

2004 (1)

S. Fujiharaa and M. Oikawa, “Structure and luminescent properties of CeO2: rare earth (RE=Eu3+ and Sm3+) thin films,” J. Appl. Phys. 95(12), 8002–8006 (2004).
[Crossref]

2002 (2)

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

P. J. Hyun and D. J. Min, “H, S, Song, “FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2CaF2 slags,” Transactions of the Iron & Steel Institute of Japan 42(4), 344–351 (2002).
[Crossref]

Aluguri, R.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Avram, D.

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

Bar, R.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Börger, A.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Chen, D.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Chen, K.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Chen, R.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Cheng, Y.

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Cojocaru, B.

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

Coroiu, I.

I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
[Crossref]

Culea, E.

I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
[Crossref]

Darabont, A.

I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
[Crossref]

Das, S.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Dhananjaya, N.

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Ding, X.

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Dong, Z.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Florea, M.

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

Frost, R. L.

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

Fu, Z.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Fujiharaa, S.

S. Fujiharaa and M. Oikawa, “Structure and luminescent properties of CeO2: rare earth (RE=Eu3+ and Sm3+) thin films,” J. Appl. Phys. 95(12), 8002–8006 (2004).
[Crossref]

Gao, Y.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Garai, M.

M. Garai and B. Karmakar, “Rare earth ion controlled crystallization of mica glass-ceramics,” J. Alloys Compd. 678(9), 360–369 (2016).
[Crossref]

Garnweitner, G.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Goldenberg, L. M.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Guo, C.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Han, J.

H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
[Crossref]

He, S.

X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
[Crossref]

Hickey, L.

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

Huang, P.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Hyun, P. J.

P. J. Hyun and D. J. Min, “H, S, Song, “FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2CaF2 slags,” Transactions of the Iron & Steel Institute of Japan 42(4), 344–351 (2002).
[Crossref]

Jang, K.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Jeong, J. H.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Karmakar, B.

M. Garai and B. Karmakar, “Rare earth ion controlled crystallization of mica glass-ceramics,” J. Alloys Compd. 678(9), 360–369 (2016).
[Crossref]

Kavyashree, D.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

Kloprogge, J. T.

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

Lee, H. S.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Li, L.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Lin, H.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Lin, S.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

Lin, T.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Liu, X.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Luo, W.

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Lv, C.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Ma, X.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Malleshappa, J.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Manna, S.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Min, D. J.

P. J. Hyun and D. J. Min, “H, S, Song, “FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2CaF2 slags,” Transactions of the Iron & Steel Institute of Japan 42(4), 344–351 (2002).
[Crossref]

Moon, B. K.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Nagabhushana, B. M.

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Nagabhushana, H.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Ninjbadgar, T.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Oikawa, M.

S. Fujiharaa and M. Oikawa, “Structure and luminescent properties of CeO2: rare earth (RE=Eu3+ and Sm3+) thin films,” J. Appl. Phys. 95(12), 8002–8006 (2004).
[Crossref]

Pavesi, L.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Porosnicu, I.

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

Prashantha, S. C.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

Premkumar, H. B.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

Prtljaga, N.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Ray, S. K.

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Sakhno, O. V.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Sharma, S. C.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Shen, Y.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Shivakumara, C.

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Stumpe, J.

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

Sun, H.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Sunitha, D. V.

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Swihart, M. T.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Tan, M.

X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
[Crossref]

Tiseanu, C.

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

Wan, N.

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Wang, C.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Wang, H.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Wang, Y.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Wharton, D.

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

Xiao, F.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Xu, J.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Xu, L.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

Yang, A.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Yang, B.

H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
[Crossref]

Yang, D.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Yang, H.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Yi, S. S.

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

Yu, Y.

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Zhang, H.

H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
[Crossref]

Zhang, P.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

Zhang, Q.

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Zhang, X.

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Zhao, X.

X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
[Crossref]

Zheng, Y.

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Zhou, L.

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Zhu, C.

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

Adv. Funct. Mater. (2)

T. Ninjbadgar, G. Garnweitner, A. Börger, L. M. Goldenberg, O. V. Sakhno, and J. Stumpe, “Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites,” Adv. Funct. Mater. 19(11), 1819–1825 (2009).
[Crossref]

H. Zhang, J. Han, and B. Yang, “Structural fabrication and functional modulation of nanoparticle-polymer composites,” Adv. Funct. Mater. 20(10), 1533 (2010).
[Crossref]

Am. Mineral. (1)

J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and raman study of interlayer anions CO3-2 NO3- SO42- CIO4-, ” Am. Mineral. 87(5–6), 623–629 (2002).
[Crossref]

Appl. Phys. Lett. (2)

C. Lv, C. Zhu, C. Wang, Y. Gao, X. Ma, and D. Yang, “Electroluminescence from metal-oxide-semiconductor devices with erbium-doped CeO2 films on silicon,” Appl. Phys. Lett. 106(14), 141102 (2015).
[Crossref]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

J. Alloys Compd. (3)

M. Garai and B. Karmakar, “Rare earth ion controlled crystallization of mica glass-ceramics,” J. Alloys Compd. 678(9), 360–369 (2016).
[Crossref]

J. Malleshappa, H. Nagabhushana, S. C. Sharma, D. V. Sunitha, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana, “Self propagating combustion synthesis and luminescent properties of nanocrystalline CeO2:Tb3+ (1-10 mol%) phosphors,” J. Alloys Compd. 590(590), 131–139 (2014).
[Crossref]

Y. Yu, D. Chen, P. Huang, H. Lin, A. Yang, and Y. Wang, “Sensitization and protection of Eu3+ luminescence by CeO2 in nano-composite,” J. Alloys Compd. 513(4), 626–629 (2012).
[Crossref]

J. Appl. Phys. (2)

S. Fujiharaa and M. Oikawa, “Structure and luminescent properties of CeO2: rare earth (RE=Eu3+ and Sm3+) thin films,” J. Appl. Phys. 95(12), 8002–8006 (2004).
[Crossref]

T. Lin, X. Ding, J. Xu, N. Wan, L. Xu, and K. Chen, “Influences of doping and annealing conditions on the photoluminescence from In2O3 nanocrystals and Eu3+ ions co-doped sol-gel SiO2 films,” J. Appl. Phys. 109(8), 083512 (2011).
[Crossref]

J. Lumin. (1)

D. Avram, I. Porosnicu, B. Cojocaru, M. Florea, and C. Tiseanu, “Time-gated down-/up-conversion emission of Ho-CeO2 and Ho, Yb-CeO2 nanoparticles,” J. Lumin. 179(11), 265–271 (2016).
[Crossref]

J. Magn. Magn. Mater. (1)

I. Coroiu, E. Culea, and A. Darabont, “Magnetic and structural behaviour of the sol–gel-derived iron aluminosilicate glass-ceramics,” J. Magn. Magn. Mater. 290-291, 997–1000 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Zhao, S. He, and M. Tan, “Design of infrared-emitting rare earth doped nanoparticles and nanostructured composites,” J. Mater. Chem. C Mater. Opt. Electron. Devices 36(36), 8349–8372 (2016).
[Crossref]

J. Phys. Chem. C (2)

L. Li, H. Yang, B. K. Moon, Z. Fu, C. Guo, J. H. Jeong, S. S. Yi, K. Jang, and H. S. Lee, “Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a Sol-Gel method,” J. Phys. Chem. C 113(2), 610–617 (2009).
[Crossref]

F. Xiao, R. Chen, Y. Shen, Z. Dong, H. Wang, Q. Zhang, and H. Sun, “Efficient energy transfer and enhanced infrared emission in Er-doped ZnO-SiO2 composites,” J. Phys. Chem. C 116(24), 13458–13462 (2012).
[Crossref]

Mater. Chem. Phys. (1)

Y. Yu, D. Chen, Y. Wang, W. Luo, Y. Zheng, Y. Cheng, and L. Zhou, “Structural evolution and its influence on luminescence of SiO2-SrF2-ErF3 glass ceramics prepared by sol–gel method,” Mater. Chem. Phys. 100(2-3), 241–245 (2006).
[Crossref]

Nanotechnology (1)

S. Manna, R. Aluguri, R. Bar, S. Das, N. Prtljaga, L. Pavesi, and S. K. Ray, “Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions,” Nanotechnology 26(4), 045202 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

X. Zhang, S. Lin, T. Lin, P. Zhang, J. Xu, L. Xu, and K. Chen, “Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films,” Phys. Chem. Chem. Phys. 17(18), 11974–11980 (2015).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

J. Malleshappa, H. Nagabhushana, D. Kavyashree, S. C. Prashantha, S. C. Sharma, H. B. Premkumar, and C. Shivakumara, “Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 145, 63–75 (2015).
[Crossref] [PubMed]

Transactions of the Iron & Steel Institute of Japan (1)

P. J. Hyun and D. J. Min, “H, S, Song, “FT-IR spectroscopic study on structure of CaO-SiO2 and CaO-SiO2CaF2 slags,” Transactions of the Iron & Steel Institute of Japan 42(4), 344–351 (2002).
[Crossref]

Other (1)

S. Brovelli, A. Chiodini, A. Lauria, F, Meinardi, and A, Paleari, “Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica,” Physical Review B 73 (73), 07340 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 XRD patterns of the NC10 sample annealed at different temperatures (a) and NC samples with different CeO2 contents annealed at 1000 °C (b). (c) HRTEM image of the NC10 sample annealed at 1000 °C; inset shows corresponding SAED pattern.
Fig. 2
Fig. 2 IR spectra of the NC10 sample annealed at different temperatures (a) and DG samples with different CeO2 contents (b).
Fig. 3
Fig. 3 (a) PLE spectra of NC10 samples annealed at different temperatures. (b) Normalized visible and near-infrared PL spectra of the NC10 sample annealed at 1000 °C, excited at 346 nm and 520 nm respectively. The inset shows the normalized emitted photons ratio at the 4I13/24I15/2 transition for two excitation wavelength. (c) PL spectra of the NC10 sample annealed at 1000 °C excited at different wavelength. For comparison, excitation and emission spectra of the NC0 sample annealed at 1000 °C are also displayed in (a) and (b).
Fig. 4
Fig. 4 (a) PL spectra and (b) decay curves of the NC10 sample annealed at different temperatures excited at 346 nm.
Fig. 5
Fig. 5 (a) PL spectra and (b) decay curves of the samples with different CeO2 contents excited at 346 nm. Inset in (a) shows the dependence of 1532 nm emission intensity on the CeO2 content. The decay curve for the NC0 sample is excited at 520 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ= I(t) / I 0 dt

Metrics