Abstract

Recently, considerable attention has been paid to photochromic (PC) materials owing to its great potential application in various fields, such as rewritable copy papers, erasable optical memory media, smartwindows, sensors, photoswitches and so on. Up until now, most of PC materials come from organics. However, we report that a self-activated LAG phosphor possesses PC property based on non-doped Mg2SnO4 synthesized via a traditional solid-state reaction method. The photoluminescence and long afterglow (LAG) properties were investigated. Interestingly, the white surface color can be colored into brown by ultraviolet-light (UV) irradiation. After visible light irradiation or heat-treatment, the colored Mg2SnO4 can be bleached into white again. The reversible white-brown PC properties of Mg2SnO4 were characterized by diffuse reflectance spectra. Based on the observed phenomena and the obtained experimental results, a tentative model was constructed to illustrate the LAG and PC mechanism.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics

Jumpei Ueda, Tatsuaki Shinoda, and Setsuhisa Tanabe
Opt. Mater. Express 3(6) 787-793 (2013)

Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics

Yixi Zhuang, Jumpei Ueda, and Setsuhisa Tanabe
Opt. Mater. Express 2(10) 1378-1383 (2012)

Effect of oxygen vacancies on the red phosphorescence of Sr2SnO4:Sm3+ phosphor

Xuhui Xu, Yuhua Wang, Yu Gong, Wei Zeng, and Yanqin Li
Opt. Express 18(16) 16989-16994 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
    [Crossref]
  2. T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
    [Crossref]
  3. E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
    [Crossref]
  4. P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
    [Crossref]
  5. Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
    [Crossref]
  6. Y. Yonezaki and S. Takei, “Photochromism and emission-color change in Ba3MgSi2O8-based phosphors,” J. Lumin. 173, 237–242 (2016).
    [Crossref]
  7. S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
    [Crossref]
  8. J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+, Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3(6), 787–793 (2013).
    [Crossref]
  9. G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
    [Crossref]
  10. Y. X. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” Opt. Mater. Express 2(10), 1378–1383 (2012).
    [Crossref]
  11. F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
    [Crossref] [PubMed]
  12. Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
    [Crossref]
  13. Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
    [Crossref]
  14. Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
    [Crossref]
  15. Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
    [Crossref] [PubMed]
  16. Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
    [Crossref] [PubMed]
  17. Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
    [Crossref]
  18. Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
    [Crossref] [PubMed]
  19. D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
    [Crossref]
  20. P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
    [Crossref]
  21. J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
    [Crossref]
  22. B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
    [Crossref]
  23. J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
    [Crossref]
  24. J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
    [Crossref]
  25. S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997).
    [Crossref]
  26. Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
    [Crossref]

2017 (1)

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

2016 (6)

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
[Crossref]

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Y. Yonezaki and S. Takei, “Photochromism and emission-color change in Ba3MgSi2O8-based phosphors,” J. Lumin. 173, 237–242 (2016).
[Crossref]

2015 (3)

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

2014 (1)

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

2013 (4)

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
[Crossref]

J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+, Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3(6), 787–793 (2013).
[Crossref]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

2012 (2)

Y. X. Zhuang, J. Ueda, and S. Tanabe, “Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics,” Opt. Mater. Express 2(10), 1378–1383 (2012).
[Crossref]

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

2011 (1)

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

2010 (1)

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

2008 (1)

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

2006 (1)

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

2003 (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

1998 (1)

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

1997 (2)

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997).
[Crossref]

1992 (1)

D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
[Crossref]

An, S.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Baccaro, S.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Caurant, D.

D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
[Crossref]

Cemmi, A.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Chen, G. R.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Chen, L.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

Chen, R.

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997).
[Crossref]

Chen, Y. F.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Chuang, Y. J.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Cordoncilloa, E.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Danielson, E.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Duan, H.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Escribano, P.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Fu, Y. R.

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Geng, W.

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Golden, J. H.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Gong, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Gourier, D.

D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
[Crossref]

Guo, G. C.

P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
[Crossref]

Hao, X.

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Hao, X. H.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Hu, Y. H.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

Jin, Y. H.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Ju, G. F.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

Julián-López, B.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Kamimura, S.

S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
[Crossref]

Lei, B. F.

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

Li, B.

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

Li, P. X.

P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
[Crossref]

Li, W.

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Li, W. L.

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

Li, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Liang, Y. J.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Liu, F.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

McFarland, E. W.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

McKeever, S. W. S.

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997).
[Crossref]

Mu, Z. F.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Nikol, H.

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Pan, Z.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Pan, Z. W.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Planelles-Aragó, J.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Prassas, M.

D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
[Crossref]

Qin, Q. S.

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Reaves, C. M.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Ren, J.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Ronda, C.

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Sanchez, C.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Shen, W.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Shinoda, T.

Sun, H.

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Sun, H. Q.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Sun, K. N.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Sun, Q.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Takei, S.

Y. Yonezaki and S. Takei, “Photochromism and emission-color change in Ba3MgSi2O8-based phosphors,” J. Lumin. 173, 237–242 (2016).
[Crossref]

Tanabe, S.

Ueda, J.

Vianab, B.

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

Wang, M. S.

P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
[Crossref]

Wang, X.

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Wang, X. J.

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

Wang, X. S.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Wang, Y.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Wang, Y. H.

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Weinberg, W. H.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Wu, H. Y.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Wu, X. D.

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Xie, J.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Xu, C. N.

S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
[Crossref]

Xu, X.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Xu, X. H.

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Xu, X. Q.

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Yamada, H.

S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
[Crossref]

Yan, W.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Yonezaki, Y.

Y. Yonezaki and S. Takei, “Photochromism and emission-color change in Ba3MgSi2O8-based phosphors,” J. Lumin. 173, 237–242 (2016).
[Crossref]

Yu, M. H.

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Yuan, L. F.

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

Zhang, F.

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Zhang, J. C.

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Zhang, Q.

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

Zhang, Q. W.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Zhang, Y.

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Zhen, Z.

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zheng, X.

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Zhou, H. L.

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Zhou, M. J.

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

Zhuang, Y. X.

ACS Appl. Mater. Interfaces (2)

Q. Zhang, X. Zheng, H. Sun, W. Li, X. Wang, X. Hao, and S. An, “Dual-Mode Luminescence Modulation upon Visible-Light-Driven Photochromism with High Contrast for Inorganic Luminescence Ferroelectrics,” ACS Appl. Mater. Interfaces 8(7), 4789–4794 (2016).
[Crossref] [PubMed]

Q. Zhang, H. Sun, X. Wang, X. Hao, and S. An, “Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy,” ACS Appl. Mater. Interfaces 7(45), 25289–25297 (2015).
[Crossref] [PubMed]

ACS. ACS Appl. Mater. Interfaces (1)

Q. Zhang, Y. Zhang, H. Sun, W. Geng, X. Wang, X. Hao, and S. An, “Tunable luminescence contrast of Na0.5Bi4.5Ti4O15: Re3+ (Re= Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers,” ACS. ACS Appl. Mater. Interfaces 8(50), 34581–34589 (2016).
[Crossref] [PubMed]

Acta Mater. (1)

Y. Li, Y. Wang, Y. Gong, X. Xu, and F. Zhang, “Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation,” Acta Mater. 59(8), 3174–3183 (2011).
[Crossref]

Adv. Funct. Mater. (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater. 13(7), 511–516 (2003).
[Crossref]

Angew. Chem. Int. Ed. (1)

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Appl. Phys. Lett. (1)

S. Kamimura, H. Yamada, and C. N. Xu, “Purple photochromism in Sr2SnO4: Eu3+ with layered perovskite-related structure,” Appl. Phys. Lett. 102(3), 031110 (2013).
[Crossref]

Cryst. Growth Des. (1)

P. X. Li, M. S. Wang, and G. C. Guo, “Two New Coordination Compounds with a Photoactive Pyridinium-Based Inner Salt: Influence of Coordination on Photochromism,” Cryst. Growth Des. 16(7), 3709–3715 (2016).
[Crossref]

J. Appl. Phys. (2)

J. C. Zhang, M. H. Yu, Q. S. Qin, H. L. Zhou, M. J. Zhou, X. H. Xu, and Y. H. Wang, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material,” J. Appl. Phys. 108(12), 123518 (2010).
[Crossref]

D. Caurant, D. Gourier, and M. Prassas, “Electron-paramagnetic-resonance study of silver halide photochromic glasses: Darkening mechanism,” J. Appl. Phys. 71(3), 1081–1090 (1992).
[Crossref]

J. Eur. Ceram. Soc. (1)

Q. W. Zhang, Y. Zhang, H. Q. Sun, Q. Sun, X. S. Wang, X. H. Hao, and S. An, “Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics,” J. Eur. Ceram. Soc. 37(3), 955–966 (2017).
[Crossref]

J. Lumin. (3)

J. C. Zhang, Q. S. Qin, M. H. Yu, M. J. Zhou, and Y. H. Wang, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors,” J. Lumin. 132(1), 23–26 (2012).
[Crossref]

B. F. Lei, B. Li, X. J. Wang, and W. L. Li, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor,” J. Lumin. 118(2), 173–178 (2006).
[Crossref]

Y. Yonezaki and S. Takei, “Photochromism and emission-color change in Ba3MgSi2O8-based phosphors,” J. Lumin. 173, 237–242 (2016).
[Crossref]

J. Mater. Chem. (1)

P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncilloa, B. Vianab, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2008).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (2)

Y. H. Jin, Y. H. Hu, Y. R. Fu, L. Chen, G. F. Ju, and Z. F. Mu, “Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(36), 9435–9443 (2015).
[Crossref]

Y. H. Jin, Y. H. Hu, L. F. Yuan, L. Chen, H. Y. Wu, G. F. Ju, H. Duan, and Z. F. Mu, “Multifunctional Near-Infrared Emitting Cr3+-doped Mg4Ga8Ge2O20 Particles with Long Persistent, Photostimulated Persistent Luminescence and Photochromism Properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(27), 6614–6625 (2016).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

G. F. Ju, Y. H. Hu, L. Chen, and X. J. Wang, “Photochromism of rare earth doped barium haloapatite,” J. Photochem. Photobiol. Chem. 251, 100–105 (2013).
[Crossref]

Light Sci. Appl. (1)

Y. J. Liang, F. Liu, Y. F. Chen, X. J. Wang, K. N. Sun, and Z. W. Pan, “New function of the Yb3+ ion as an efficient emitter of persistent luminescence in the short-wave infrared,” Light Sci. Appl. 5(7), e16124 (2016).
[Crossref]

Mater. Lett. (1)

Y. H. Jin, Y. H. Hu, Y. R. Fu, Z. F. Mu, and G. F. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Nature (1)

E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials,” Nature 389(6654), 944–948 (1997).
[Crossref]

Opt. Mater. Express (2)

Radiat. Meas. (1)

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5-6), 625–661 (1997).
[Crossref]

Sci. Rep. (1)

F. Liu, W. Yan, Y. J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Ren, X. Q. Xu, W. Shen, G. R. Chen, S. Baccaro, and A. Cemmi, “Gamma-ray induced reversible photochromism of Mn2+ activated borophosphate glasses,” Sol. Energy Mater. Sol. Cells 143, 635–639 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD pattern of the obtained Mg2SnO4 sample.
Fig. 2
Fig. 2 (a). Excitation (λem = 498 nm) and emission (λex = 220 nm) spectra of non-doped Mg2SnO4; (b) LAG decay curve of Mg2SnO4 (excited at 220 nm for 10 min, monitored at 498 nm).
Fig. 3
Fig. 3 (a). Diffuse reflectance spectra of Mg2SnO4 before and after UV irradiation; (b) Reflectivity intensity (at 420 nm) dependence on different delay times (0–480 h); (c) Body color changing photographs of Mg2SnO4 under UV, sunlight or heat treatment.
Fig. 4
Fig. 4 (a). Diffuse reflectance spectra of colored Mg2SnO4 sample after different temperatures (50–350 °C) heat treatment for 3 min; (b) Reflectance intensity changes of Mg2SnO4 at 420 nm induced by colored by 220 nm irradiation and bleached by 532 nm light irradiation (Green dots) or 350 °C heating treatment (Red dots).
Fig. 5
Fig. 5 TL curves of Mg2SnO4: Excited at 220 nm for 10 min then (a) Fitted results of 10 min delay time; (b) with different delay time (5 min-480 h).
Fig. 6
Fig. 6 A schematic for illustrate the mechanism of LAG and PC.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)= n b s'exp( E 0 /kT)

Metrics