Abstract

We report the realization of photon upconversion through interfacial energy transfer in Yb3+/Tb3+ coupled core-shell nanostructure. The spatial separation of sensitizer and activator at different layers through the core-shell structure enables the enhancement of photon emission by minimizing the non-radiative decays of the activator. Furthermore, the energy migration among Tb3+ ions within the core matrix lattice effectively facilitates the energy transfer to a much farther distance, resulting in efficient photon upconversion by the Tb3+-mediated interfacial energy transfer. Our result offers a novel and widespread approach for achieving photon upconversion of lanthanide-doped nanocrystals that would help develop a new class of efficient upconverting materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared upconversion of Nd through Gd-mediated interfacial energy transfer in core-shell nanoparticles

Lili Tao, Xuelong Liu, Junshan He, Yajun Lou, Yonghui Li, Yu Zhao, and Bo Zhou
Opt. Mater. Express 8(8) 2449-2454 (2018)

Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+,Tb3+,Yb3+ microcrystals

Xiaojie Xue, Makhin Thitsa, Tonglei Cheng, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 24(23) 26307-26321 (2016)

Improved multiphoton ultraviolet upconversion photoluminescence in ultrasmall core-shell nanocrystals

Lili Tao, Bo Zhou, Wei Jin, Yang Chai, Chun-Yin Tang, and Yuen H. Tsang
Opt. Lett. 39(21) 6265-6268 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
    [Crossref] [PubMed]
  2. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
    [Crossref] [PubMed]
  3. C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
    [Crossref] [PubMed]
  4. Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
    [Crossref]
  5. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
    [Crossref] [PubMed]
  6. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  7. B. S. Richards and S. E. Mater, “Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers,” Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  8. S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
    [Crossref] [PubMed]
  9. C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
    [Crossref] [PubMed]
  10. H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Angew. Chem. Int. Ed. Engl. 52(13), 3584–3600 (2013).
    [Crossref] [PubMed]
  11. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  12. M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  13. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
    [Crossref] [PubMed]
  14. G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
    [Crossref] [PubMed]
  15. X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
    [PubMed]
  16. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
    [Crossref] [PubMed]
  17. X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
    [Crossref] [PubMed]
  18. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
    [Crossref] [PubMed]
  19. D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
    [Crossref] [PubMed]
  20. B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
    [Crossref]
  21. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
    [Crossref] [PubMed]
  22. D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
    [Crossref] [PubMed]
  23. B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
    [Crossref] [PubMed]
  24. F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
    [Crossref] [PubMed]
  25. D. Chen and P. Huang, “Highly Intense Upconversion Luminescence in Yb/Er:NaGdF4@NaYF4 Core-Shell Nanocrystals with Complete Shell Enclosure of the Core,” Dalton Trans. 43(29), 11299–11304 (2014).
    [Crossref] [PubMed]
  26. B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
    [Crossref] [PubMed]
  27. R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
    [Crossref]
  28. I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
    [Crossref] [PubMed]
  29. H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
    [Crossref]
  30. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  31. L. G. Van Uitert and L. F. Johnson, “Energy Transfer Between Rare-Earth Ions,” J. Chem. Phys. 44(9), 3514–3522 (1966).
    [Crossref]
  32. F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
    [Crossref]
  33. G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,” Chem. Phys. 19, 341–343 (2007).
  34. C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
    [Crossref]
  35. B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
    [Crossref]
  36. A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
    [Crossref] [PubMed]

2016 (2)

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

2015 (7)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly Intense Upconversion Luminescence in Yb/Er:NaGdF4@NaYF4 Core-Shell Nanocrystals with Complete Shell Enclosure of the Core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

2013 (6)

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Angew. Chem. Int. Ed. Engl. 52(13), 3584–3600 (2013).
[Crossref] [PubMed]

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

2012 (3)

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

2011 (2)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2010 (3)

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

2009 (1)

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

2008 (1)

H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

2007 (1)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,” Chem. Phys. 19, 341–343 (2007).

2006 (1)

B. S. Richards and S. E. Mater, “Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

2005 (1)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

2004 (2)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

1966 (1)

L. G. Van Uitert and L. F. Johnson, “Energy Transfer Between Rare-Earth Ions,” J. Chem. Phys. 44(9), 3514–3522 (1966).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Ågren, H.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Bettinelli, M.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Blasiak, B.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Boyer, J.-C.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Capobianco, J. A.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Chai, Y.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Che, R.

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Chen, D.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly Intense Upconversion Luminescence in Yb/Er:NaGdF4@NaYF4 Core-Shell Nanocrystals with Complete Shell Enclosure of the Core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Chen, G.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, X.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Chen, Y.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Chow, G.-M.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,” Chem. Phys. 19, 341–343 (2007).

Cohen, B. E.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Dadvand, A.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Damasco, J.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Ding, M.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Dong, C.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Duan, C.

H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Fang, C.-J.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Gao, N.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Gillin, W. P.

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

Goldys, E.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Gorris, H. H.

H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Angew. Chem. Int. Ed. Engl. 52(13), 3584–3600 (2013).
[Crossref] [PubMed]

Gu, L.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Gu, Z.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Haase, M.

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Han, G.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Han, S.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

Han, Y.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

He, F.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Hernández, I.

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Hou, Z.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Hu, P.

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Huang, P.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen and P. Huang, “Highly Intense Upconversion Luminescence in Yb/Er:NaGdF4@NaYF4 Core-Shell Nanocrystals with Complete Shell Enclosure of the Core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

Huang, S.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Huo, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Ji, Z.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Jin, D.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Jin, W.

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

Johnson, L. F.

L. G. Van Uitert and L. F. Johnson, “Energy Transfer Between Rare-Earth Ions,” J. Chem. Phys. 44(9), 3514–3522 (1966).
[Crossref]

Katz, E. M.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Korinek, A.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Lau, S. P.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Leif, R. C.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Li, C.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Li, F.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Li, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Li, W.

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Li, X.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Li, Z. X.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Liao, L.-Y.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Lin, J.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Liu, B.

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Liu, D.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Liu, L.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Liu, X.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Lu, H.

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

Lu, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Lu, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Ma, E.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Ma, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Martín-Rodríguez, R.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Mater, S. E.

B. S. Richards and S. E. Mater, “Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Milliron, D. J.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Pathumakanthar, N.

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

Perepichka, D. F.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Piccinelli, F.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Piper, J. A.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Polizzi, S.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Prasad, P. N.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Qiu, H.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Raudsepp, M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Richards, B. S.

B. S. Richards and S. E. Mater, “Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Robinson, J. P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Rosei, F.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schuck, P. J.

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Shao, W.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Shen, D.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Shen, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Shi, B.

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

Shi, Y.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Sivakumar, S.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Speghini, A.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Sun, L.-D.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Sun, Q.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Sun, W.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Sun, Y.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Sunna, A.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Tan, Y.-W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Tanner, P. A.

H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Tao, L.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

Tian, G.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Tomanek, B.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Tsang, Y. H.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

Tu, D.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Valiente, R.

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

Valiev, R. R.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Van Uitert, L. G.

L. G. Van Uitert and L. F. Johnson, “Energy Transfer Between Rare-Earth Ions,” J. Chem. Phys. 44(9), 3514–3522 (1966).
[Crossref]

van Veggel, F. C. J. M.

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Vetrone, F.

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

Wang, F.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Wang, J.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, Q.

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Wang, R.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

Wang, Y.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Wolfbeis, O. S.

H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Angew. Chem. Int. Ed. Engl. 52(13), 3584–3600 (2013).
[Crossref] [PubMed]

Wu, X.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Wyatt, P. B.

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

Xi, P.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Xie, X.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Xu, C.-H.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Xu, Q.-H.

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

Yan, C.

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Yan, C.-H.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Yang, C.

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Yang, J.

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Yang, W.

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

Yang, X.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Yang, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Yao, C.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Yao, J.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Yi, G.-S.

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,” Chem. Phys. 19, 341–343 (2007).

Zhang, C.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhang, F.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Zhang, Q.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Zhang, R.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Zhang, Y.-W.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhao, D.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

Zhao, J.

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Zhao, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Zhong, J.

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Zhong, Y.

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

Zhou, H.-P.

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

Zhou, L.

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

Zhu, H.

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

ACS Nano (2)

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref] [PubMed]

A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, and B. E. Cohen, “Controlled Synthesis and Single-particle Imaging of Bright, Sub-10 nm Lanthanide-doped Upconverting Nanocrystals,” ACS Nano 6(3), 2686–2692 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

B. Liu, Y. Chen, C. Li, F. He, Z. Hou, S. Huang, H. Zhu, X. Chen, and J. Lin, “Poly(Acrylic Acid)Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery,” Adv. Funct. Mater. 25(29), 4717–4729 (2015).
[Crossref]

Adv. Mater. (4)

Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, “Elimination of Photon Quenching-Shield Sandwich Structure for 800nm Excited Upconversion Luminescence of Nd3+-Sensitized Nanoparticles,” Adv. Mater. 26, 2831–2837 (2014).
[Crossref] [PubMed]

B. Zhou, W. Yang, S. Han, Q. Sun, and X. Liu, “Photon Upconversion through Tb3+ -Mediated Interfacial Energy Transfer,” Adv. Mater. 27(40), 6208–6212 (2015).
[Crossref] [PubMed]

I. Hernández, N. Pathumakanthar, P. B. Wyatt, and W. P. Gillin, “Cooperative Infrared to Visible Up Conversion in Tb3+, Eu3+, and Yb3+ Containing Polymers,” Adv. Mater. 22(47), 5356–5360 (2010).
[Crossref] [PubMed]

C. Zhang, H.-P. Zhou, L.-Y. Liao, W. Feng, W. Sun, Z. X. Li, C.-H. Xu, C.-J. Fang, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout,” Adv. Mater. 22(5), 633–637 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

H. H. Gorris and O. S. Wolfbeis, “Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres,” Angew. Chem. Int. Ed. Engl. 52(13), 3584–3600 (2013).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

B. Zhou, L. Tao, Y. Chai, S. P. Lau, Q. Zhang, and Y. H. Tsang, “Constructing Interfacial Energy Transfer for Photon Up- and Down-Conversion from Lanthanides in a Core-Shell Nanostructure,” Angew. Chem. Int. Ed. Engl. 55(40), 12356–12360 (2016).
[Crossref] [PubMed]

Chem. Mater. (1)

C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation Exchange: A Facile Method To Make NaYF4:Yb, Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell,” Chem. Mater. 24(7), 1297–1305 (2012).
[Crossref]

Chem. Phys. (1)

G.-S. Yi and G.-M. Chow, “Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence,” Chem. Phys. 19, 341–343 (2007).

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, and X. Chen, “Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic structures, Optical Properties, and Biodetection,” Chem. Soc. Rev. 44(6), 1379–1415 (2015).
[Crossref] [PubMed]

Dalton Trans. (1)

D. Chen and P. Huang, “Highly Intense Upconversion Luminescence in Yb/Er:NaGdF4@NaYF4 Core-Shell Nanocrystals with Complete Shell Enclosure of the Core,” Dalton Trans. 43(29), 11299–11304 (2014).
[Crossref] [PubMed]

Inorg. Chem. (1)

D. Chen, Y. Chen, H. Lu, and Z. Ji, “A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence,” Inorg. Chem. 53(16), 8638–8645 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

X. Xie, N. Gao, R. Deng, Q. Sun, Q.-H. Xu, and X. Liu, “Mechanistic Investigation of Photon Upconversion in Nd3+-Sensitized Core-Shell Nanoparticles,” J. Am. Chem. Soc. 135(34), 12608–12611 (2013).
[Crossref] [PubMed]

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

C. Yan, A. Dadvand, F. Rosei, and D. F. Perepichka, “Near-IR Photoresponse in New Up-Conversion CdSe/NaYF4:Yb,Er Nanoheterostructures,” J. Am. Chem. Soc. 132(26), 8868–8869 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Vetrone, J.-C. Boyer, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ Concentration on the Upconversion Mechanisms in Codoped Y2O3: Er3+, Yb3+ Nanocrystals,” J. Appl. Phys. 96(1), 661–667 (2004).
[Crossref]

J. Chem. Phys. (2)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

L. G. Van Uitert and L. F. Johnson, “Energy Transfer Between Rare-Earth Ions,” J. Chem. Phys. 44(9), 3514–3522 (1966).
[Crossref]

J. Mater. Chem. C (1)

B. Zhou, L. Tao, Y. H. Tsang, and W. Jin, “Core-shell Nanoarchitecture: A Strategy to Significantly Enhance White-light Upconversion of Lanthanide-doped Nanoparticles,” J. Mater. Chem. C 1(28), 4313–4318 (2013).
[Crossref]

J. Phys. Chem. C (2)

H. Wang, C. Duan, and P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, and F. Piccinelli, “Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+-Yb3+ and Eu3+-Yb3+,” J. Phys. Chem. C 113(28), 12195–12200 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Chen, L. Liu, P. Huang, M. Ding, J. Zhong, and Z. Ji, “Nd3+-Sensitized Ho3+ Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture,” J. Phys. Chem. Lett. 6(14), 2833–2840 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, and D. Zhao, “Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties,” Nano Lett. 12(6), 2852–2858 (2012).
[Crossref] [PubMed]

G. Chen, J. Damasco, H. Qiu, W. Shao, T. Y. Ohulchanskyy, R. R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, and P. N. Prasad, “Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal,” Nano Lett. 15(11), 7400–7407 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-Feedback Upconversion Nanocomposite for Accurate Photothermal Therapy at Facile Temperature,” Nat. Commun. 7, 10437–10447 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, “Tuning Upconversion through Energy Migration in Core-Shell Nanoparticles,” Nat. Mater. 10(12), 968–973 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal Full-Colour Tuning through Non-Steady-State Upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling Upconversion Nanocrystals for Emerging Applications,” Nat. Nanotechnol. 10(11), 924–936 (2015).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, and B. Sanii, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9, 300–305 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Lu, J. Zhao, R. Zhang, Y. Liu, D. Liu, E. Goldys, X. Yang, P. Xi, A. Sunna, J. Lu, Y. Shi, R. C. Leif, Y. Huo, J. Shen, J. A. Piper, J. P. Robinson, and D. Jin, “Tunable Lifetime Multiplexing Using Luminescent Nanocrystals,” Nat. Photonics 8(1), 32–36 (2013).
[Crossref]

Sci. Rep. (1)

X. Li, R. Wang, F. Zhang, L. Zhou, D. Shen, C. Yao, and D. Zhao, “Nd3+ Sensitized Up/down converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm,” Sci. Rep. 3, 3536 (2013).
[PubMed]

Sol. Cells (1)

B. S. Richards and S. E. Mater, “Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers,” Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of a core-shell nanostructure design with interfacial area (left panel) and detail of Tb3+-mediated interfacial energy transfer upconversion (right panel). CS, ET and IETU represent cooperative sensitization, energy transfer and interfacial energy transfer upconversion, respectively. NIR and VIS represent near-infrared excitation and visible emission photons, respectively.
Fig. 2
Fig. 2 (a) TEM images, high-resolution TEM images, selected area electron diffraction (SAED) pattern, and (b) XRD patterns of as-synthesized NaYbF4:Tb core and NaYbF4:Tb@NaLuF4:Eu core-shell nanoparticles. (c) Upconversion emission spectra of NaYbF4:Tb@NaXF4:Eu(X = Y, Gd, Lu, La; Eu3+: 30 mol%) core-shell nanoparticles. (d,e) A comparison of emission spectra from NaYbF4:Tb@NaLuF4:Eu, NaYbF4:Tb@NaLuF4 and NaYbF4@NaLuF4:Eu core-shell nanocrystals. Inset of (d) shows the emission photographs of the former two samples. Note that all emission spectra were measured at 980 nm excitation.
Fig. 3
Fig. 3 (a) Decay curves of Tb3+ emissions at 546 and 415 nm for the NaYbF4:Tb@NaLuF4:Eu and NaYbF4:Tb@NaLuF4 core-shell samples upon a pulse 980-nm excitation. (b) A comparison of upconversion emission spectra of the two samples in (a). (c) Proposed possible interfacial energy transfer (IET) pathways in activation of Eu3+ in the shell under 980 nm excitation. Note that CSU stands for cooperative sensitization upconversion.
Fig. 4
Fig. 4 (a) Upconversion emission spectra of NaYbF4:Tb@NaLuF4:Eu core-shell and NaYbF4:Tb@NaLuF4@NaLuF4:Eu core-shell-shell nanocrystals. Inset, the schematic of IET confining in a narrow layer close to the core/shell interface. (b) Upconversion emission spectra of core NaYbF4:Tb, and core-shell NaYbF4:Tb@NaLuF4:Eu and NaYbF4:Tb/Eu@NaLuF4 samples. (c) Emission photographs and (d) upconversion emission spectra of NaYbF4:Tb@NaGdF4:Eu with increasing concentration of Eu3+ from 0 to 30 mol%. Left inset of (d) shows the detail of color change in the CIE(x,y) chromaticity diagram. Right inset of (d) shows the Eu-to-Tb emission intensity ratio as a function of pump power. (e) Proposed energy migration among Tb3+ ions for activating the Eu3+ in the shell layer through using the Tb3+ ions far away from the interfacial area. (f) Upconversion emission spectra obtained from NaYbF4:Tb@NaYbF4:Tb@NaLuF4:Eu and NaYbF4@NaYbF4:Tb@NaLuF4:Eu tri-layer nanoparticles. Note that all emission spectra were measured under 980 nm excitation.

Metrics