Abstract

A new scheme of a highly-reliable glass-based color wheel applied to a laser light engine (LLE) for a high-power laser operation is demonstrated for the first time. The glass-based color wheel showed better thermal stability than the silicone-based color wheel, about 13.6 times less lumen loss and 3 times less chromaticity shift after being operated under a 30 Wopt laser for 2000 hours, respectively. The excellent thermal stability can be attributed to the high glass transition temperature up to 570 °C exhibited by the glass-based color wheel. The easy fabrication and the good reliability on optical performance under thermal stress benefit the novel glass-based color wheels as promising candidates to replace the silicone-based color wheels in the LLE modules for the next-generation laser projector.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An advanced laser headlight module employing highly reliable glass phosphor

Yung-Peng Chang, Jin-Kai Chang, Hsin-An Chen, Shih-Hsin Chang, Chun-Nien Liu, Pin Han, and Wood-Hi Cheng
Opt. Express 27(3) 1808-1815 (2019)

Novel broadband glass phosphors for high CRI WLEDs

Li-Yin Chen, Wei-Chih Cheng, Chun-Chin Tsai, Jin-Kai Chang, Yi-Chung Huang, Jhih-Ci Huang, and Wood-Hi Cheng
Opt. Express 22(S3) A671-A678 (2014)

Luminescence material characterizations on laser-phosphor lighting techniques

Chih-Ting Yeh, Yen-I Chou, Kai-Shing Yang, Shih-Kuo Wu, and Chi-Chuan Wang
Opt. Express 27(5) 7226-7236 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4(1), 86–91 (2008).
    [Crossref]
  2. B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
    [Crossref]
  3. K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
    [Crossref]
  4. T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” J. Lumin. 114(1), 39–42 (2005).
    [Crossref]
  5. A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
    [Crossref]
  6. Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
    [Crossref] [PubMed]
  7. M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
    [Crossref]
  8. J. J. Wierer and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 22(5), 1–6 (2014).
  9. J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
    [Crossref]
  10. C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
    [Crossref]
  11. L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin, and W. H. Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion,” Opt. Mater. Express 4(1), 121–128 (2014).
    [Crossref]
  12. L. Y. Chen, W. C. Cheng, C. C. Tsai, J. K. Chang, Y. C. Huang, J. C. Huang, and W. H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs,” Opt. Express 22(S3), A671–A678 (2014).
    [Crossref] [PubMed]
  13. L. Y. Chen, J. K. Chang, W. C. Cheng, J. C. Huang, Y. C. Huang, and W. H. Cheng, “Chromaticity tailorable glass-based phosphor-converted white light-emitting diodes with high color rendering index,” Opt. Express 23(15), A1024–A1029 (2015).
    [Crossref] [PubMed]
  14. J. K. Chang, W. C. Cheng, Y. Y. Kuo, C. C. Tsai, Y. P. Chang, Y. C. Huang, L. Y. Chen, and W. H. Cheng, “Next-Generation Glass-Based Phosphor-Converted Laser Light Engine,” Proc. SPIE 9571, Fourteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 957103, Aug. 9–13, San Diego, CA (2015).
  15. C. A. S. I. O. Slim Projectors, https://www.casio.com/products/Projectors/Slim_Projectors/ .

2016 (2)

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
[Crossref]

2012 (1)

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

2011 (1)

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

2009 (1)

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

2008 (1)

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4(1), 86–91 (2008).
[Crossref]

2005 (1)

T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” J. Lumin. 114(1), 39–42 (2005).
[Crossref]

Bergenek, K.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Cantore, M.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Chang, J. K.

Chen, J. H.

C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
[Crossref]

Chen, L. Y.

Chen, M. H.

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

Cheng, W. C.

Cheng, W. H.

Chung, C. H.

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

Denault, K. A.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

DenBaars, S. P.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Eisert, D.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Fournier, F.

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4(1), 86–91 (2008).
[Crossref]

Garay, J. E.

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Hardin, C. L.

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Hsu, Y. C.

C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
[Crossref]

Huang, J. C.

Huang, Y. C.

Jeong, B. W.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Jermann, F.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Ji, E. K.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Jung, C.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Jung, M. K.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Kelso, J.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Kim, E. Y.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Kim, I. S.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Ko, D. K.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Kodera, Y.

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Kojima, T.

T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” J. Lumin. 114(1), 39–42 (2005).
[Crossref]

Lee, Y. L.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Lin, Y. S.

Linkov, A.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Nakamura, S.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Penilla, E. H.

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Raukas, M.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Rolland, J.

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4(1), 86–91 (2008).
[Crossref]

Seshadri, R.

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

Song, Y. H.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Tsai, C. C.

L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin, and W. H. Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion,” Opt. Mater. Express 4(1), 121–128 (2014).
[Crossref]

L. Y. Chen, W. C. Cheng, C. C. Tsai, J. K. Chang, Y. C. Huang, J. C. Huang, and W. H. Cheng, “Novel broadband glass phosphors for high CRI WLEDs,” Opt. Express 22(S3), A671–A678 (2014).
[Crossref] [PubMed]

C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
[Crossref]

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

Tsao, J. Y.

J. J. Wierer and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 22(5), 1–6 (2014).

Wang, J.

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

Wieg, A. T.

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

Wierer, J. J.

J. J. Wierer and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 22(5), 1–6 (2014).

Yanagisawa, T.

T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” J. Lumin. 114(1), 39–42 (2005).
[Crossref]

Yoon, D. H.

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Yu, B. A.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Yu, N. E.

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

Zheng, Y.

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

AIP Adv. (1)

K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3(7), 072107 (2013).
[Crossref]

APL Mater. (1)

A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Mater. 4(12), 126105 (2016).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS J. Solid State Sci. Technol. 2(2), R3168–R3176 (2012).
[Crossref]

Electron. Lett. (1)

B. A. Yu, C. Jung, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, “Temperature controlled, efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–944 (2009).
[Crossref]

IEEE J. Disp. Technol. (1)

C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Disp. Technol. 9(6), 427–432 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor-converted white light-emitting diodes employing Ce:YAG-doped glass,” IEEE J. Sel. Top. Quantum Electron. 17(3), 741–746 (2011).
[Crossref]

J. Disp. Technol. (1)

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4(1), 86–91 (2008).
[Crossref]

J. Lumin. (1)

T. Yanagisawa and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” J. Lumin. 114(1), 39–42 (2005).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. J. Wierer and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi., A Appl. Mater. Sci. 22(5), 1–6 (2014).

Sci. Rep. (1)

Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim, and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Sci. Rep. 6(31206), 31206 (2016).
[Crossref] [PubMed]

Other (2)

J. K. Chang, W. C. Cheng, Y. Y. Kuo, C. C. Tsai, Y. P. Chang, Y. C. Huang, L. Y. Chen, and W. H. Cheng, “Next-Generation Glass-Based Phosphor-Converted Laser Light Engine,” Proc. SPIE 9571, Fourteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 957103, Aug. 9–13, San Diego, CA (2015).

C. A. S. I. O. Slim Projectors, https://www.casio.com/products/Projectors/Slim_Projectors/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The silicone-based and (b) glass-based color wheel, (c) the silicone-based color and (b) glass-based color wheel after 30 Wopt laser power for 2000 hours.
Fig. 2
Fig. 2 Illustration of fabricating yellow and green glass based phosphor-converted layers.
Fig. 3
Fig. 3 Normalized emission spectra of the yellow and green glass phosphor.
Fig. 4
Fig. 4 Lumen loss as a function of test time of CeYDG, CeLuDG, CeYDS, and CeLuDS with high-power operation of (a) 5 Wopt and (b) 30 Wopt for 2000 hours.
Fig. 5
Fig. 5 Chromaticity shift as a function of test time of CeYDG, CeLuDG, CeDS, and CeLuDS with high-power operation of (a) 5 Wopt and (b) 30 Wopt for 2000 hours.

Metrics