Abstract

We reported a broadband terahertz (THz) plasmon-induced transparency (PIT) phenomenon owing to asymmetric coupling in between the bright-and-dark resonators in meta-molecules (MMs). Each MM contains a cut-wire resonator and a couple of identical size and gap opposite-directed U-shaped resonators in mirror symmetry. An upside displacement of cut-wire induces an asymmetric deviation of cut-wire away from the X-axis in the MMs. Then, the PIT effect occurs due to the asymmetric coupling of dark resonators. The width of the transparency window extends monotonically with the deviation increasing. A picosecond-scale group delay of the THz wave is found at the transparent windows. The distribution of surface currents and electric energy reveals that the asymmetric coupling between cut-wire and U-shaped resonators results in an energy transfer from surface plasmon (SP) oscillations to the inductive-capacitive (LC) oscillation due to the local symmetry breaking in structures of MMs. A couple of counteract SPs cause the transparency window, while the LC resonance gives rise to the side modes in the THz frequency spectrum. Furthermore, the LC oscillations of side modes take place in between the cut-wire and the local area of the U-shaped resonators, which leads to a magnetic dipole momentum. The displacement of cut-wire leads to an asymmetric distribution of magnetic momentum in MMs, which extends the width of the transparency window. Our experimental findings present a new approach to develop broadband slow-light devices in the THz frequency range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Jianbing Zhang, Hongwei Zhao, Zhijian Luo, and Wangzhou Shi
Opt. Express 25(20) 24410-24424 (2017)

Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial

Zhenyu Zhao, Zhiqiang Song, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 6(7) 2190-2200 (2016)

Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Hongwei Zhao, Jianbing Zhang, Zhijian Luo, and Wangzhou Shi
Opt. Mater. Express 7(6) 1950-1961 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  2. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
    [Crossref]
  3. U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
    [Crossref] [PubMed]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  5. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref] [PubMed]
  7. T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
    [Crossref]
  8. R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
    [Crossref] [PubMed]
  9. P. Grangier, “Quantum information: Remember that photon,” Nature 438(7069), 749–750 (2005).
    [Crossref] [PubMed]
  10. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
    [Crossref] [PubMed]
  11. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  13. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(4), 053901 (2009).
    [Crossref]
  14. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  15. M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim. “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
  16. H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011).
    [Crossref] [PubMed]
  17. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  18. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
    [Crossref]
  19. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  20. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref] [PubMed]
  21. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  22. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref]
  23. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [Crossref] [PubMed]
  24. F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
    [Crossref] [PubMed]
  25. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci. Adv. 2, 1501142 (2015).
  26. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  27. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  28. Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
    [Crossref]
  29. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  30. Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
    [Crossref]
  31. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
    [Crossref] [PubMed]
  32. W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
    [Crossref] [PubMed]
  33. Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
    [Crossref]
  34. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
    [Crossref] [PubMed]
  35. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
    [Crossref] [PubMed]
  36. Z. He, H. Li, S. Zhan, G. Cao, and B. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39(19), 5543–5546 (2014).
    [Crossref] [PubMed]

2016 (2)

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (4)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

2012 (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

2011 (3)

2010 (3)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
[Crossref] [PubMed]

2008 (1)

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

2006 (2)

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

2005 (3)

P. Grangier, “Quantum information: Remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

2002 (1)

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

2001 (2)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Averitt, R. D.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bitzer, A.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Cao, G.

Cao, J.-X.

Cao, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Dong, Z.-G.

Dorfmüller, J.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Esslinger, M.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Etrich, C.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Feurer, T.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ginzburg, P.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Grangier, P.

P. Grangier, “Quantum information: Remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Gu, J.

Ham, B. S.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Han, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, X.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

He, Z.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Huang, R.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Jang, W. H.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Jenkins, S. D.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Jiang, J.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Kern, K.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Khunsin, W.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Krauss, T. F.

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Lan, S.-Y.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Lee, Y. P.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Leonhardt, U.

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

Li, B.

Li, H.

Li, T.

Li, Z.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Liu, H.

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

Ma, Y.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Marino, G.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Martínez, A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

Merbold, H.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

O’Connor, D.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Peng, W.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Rhee, J. Y.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Rockstuhl, C.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Ruostekoski, J.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Shi, W.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Singh, R.

Song, Y.

Song, Z.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Tian, Z.

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Vogelgesang, R.

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Wan, M.

Wang, S.-M.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Wurtz, G. A.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Xu, H.

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Xu, M.-X.

Yang, X.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Yang, Y.

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zayats, A. V.

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Zhan, S.

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, L.

Zhang, S.

Zhang, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Zhang, X.

Zhao, H.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Zhao, Z.

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Zhou, F.

Zhu, S.-N.

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

ACS Nano (1)

W. Khunsin, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Rockstuhl, C. Etrich, and K. Kern, “Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode,” ACS Nano 10(2), 2214–2224 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Appl. Phys. (1)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. He, and W. Shi, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118(4), 043108 (2015).
[Crossref]

Laser Photonics Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Nature (7)

R. W. Boyd and D. J. Gauthier, “Photonics: Transparency on an optical chip,” Nature 441(7094), 701–702 (2006).
[Crossref] [PubMed]

P. Grangier, “Quantum information: Remember that photon,” Nature 438(7069), 749–750 (2005).
[Crossref] [PubMed]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438(7069), 833–836 (2005).
[Crossref] [PubMed]

U. Leonhardt, “A laboratory analogue of the event horizon using slow light in an atomic medium,” Nature 415(6870), 406–409 (2002).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B (1)

Y. Lu, H. Xu, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Magnetic plasmon resonance: Underlying route to plasmonic electromagnetically induced transparency in metamaterials,” Phys. Rev. B 82(19), 195112 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (1)

F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, and A. V. Zayats, “Near-field interference for the Unidirectional Excitation of Electromagnetic Guided Modes,” Science 340(6130), 328–330 (2013).
[Crossref] [PubMed]

Other (9)

X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, W. Zhang, “Asymmetric coupling of surface plasmons by dark mode coupling,” Sci. Adv. 2, 1501142 (2015).

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Z. Song, Z. Zhao, W. Peng, and W. Shi, “Terahertz response of fractal meta-atoms based on concentric rectangular square resonators,” J. Appl. Phys. 118(19), 193103 (2015).
[Crossref]

M. P. Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim. “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(4), 053901 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of the element of metamolecule, in which l = 86 μm, a = 28 μm, d = 42 μm, w = 4 μm, s = 48 μm, L = 98 μm, g = 2 μm, respectively. (b) The microscope image of MM, in which the period(p) is 114μm. (c) The characters of I, II, III, IV, V, VI and VII refer to the unit cells of MMs with different asymmetric deviation δ of 0, 4, 6, 8, 10, 12, and 16 μm correspondingly. (d) Experimental illustration of the THz-TDS measurement of the MMs. The polarization of incident THz pulse is along the cut-wire.
Fig. 2
Fig. 2 THz transmittance of (a) cut-wire and of (b) U-shaped resonators under THz irradiation with different polarization. Blue solid-line refers to the measured THz transmittance. Red solid-line refers to the simulated THz transmittance. The electric density at resonance modes of (c) cut-wire and of (d) U-shaped resonators, respectively. The surface current distribution at resonance mode of (e) cut-wire and of (f) U-shaped resonators, respectively.
Fig. 3
Fig. 3 (a) The simulated THz transmittance of MMs. (b) The measured THz transmittance, respectively. ΔνT refers to the width of transparency windows; Dash-line: the central frequencies of side modes. I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly.
Fig. 4
Fig. 4 (a) The measured phase spectra and (b) the group delay of MMs. I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly.
Fig. 5
Fig. 5 Surface currents of MMs: I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly. The νT, νL and νH refer to the transparent window, low-frequency mode and high frequency mode respectively. The symbols of black-arrows refer to the equivalent surface currents circulating loops. The color bar refers to the relative strength of surface currents.
Fig. 6
Fig. 6 The frequency-dependent dielectric functions of MMs. The red lines refer to the real permittivity εr. The blue curves refer to the imaginary permittivity εi. I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly.
Fig. 7
Fig. 7 Electric density distribution of MMs: I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly. The νT, νL and νH refer to the transparent window, low-frequency mode and high frequency mode respectively. The color bar refers to the relative strength of electric density.
Fig. 8
Fig. 8 The simulated magnetic field along the THz wave-vector. The characters I, II, III, IV, V, VI and VII refer to the asymmetric deviation of 0 μm, 4 μm, 6 μm, 8 μm, 10 μm, 12 μm, and 16 μm, correspondingly. The νT, νL and νH refer to the transparent window, low-frequency mode and high frequency mode respectively. The red color and blue color refer to the strength and the direction of magnetic fields along ( + ) or opposite (-) to the direction of incident THz wave-vector, correspondingly.

Tables (2)

Tables Icon

Table 1 Resonance modes of basic resonators

Tables Icon

Table 2 Properties of νL, νT and νH of MMs with different displacement of cut-wiresa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T( ν )=| E sample ( ν ) / E ref ( ν ) |,
Q= ν Δν ,
Δ t g = dφ 2πdν ,
φ= φ T φ ref +kD,
ε( ν )= ε r ( ν )+i ε i ( ν ),
z=± ( 1+ S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2 ,
exp( i k 0 d )=X±i 1 X 2 ,
X=1/ 2 S 21 ( 1 S 11 2 + S 21 2 ) .

Metrics