Abstract

The β-NaLuF4: Yb3+/Ho3+ nanocrystals have been synthesized via a solvothermal method, which were protected in a SiO2 capillary tube. Upon 980 nm continuous laser excitation, the micro-tube waveguide characteristic was studied. Additionally, the upconversion emissions from the 5F4, 5S25I8 (~545 nm), 5F55I8 (~650 nm) and 5F4, 5S25I7 (~750 nm) transitions of Ho3+ ions in the micro-tube were obtained and studied as a function of temperature in the range of 300~500 K. The maximum sensitivities derived from the fluorescence intensity ratio technique are 1.53% K−1 (I750/I650) and 0.09% K−1 (I545/I650) at 300 K. The result demonstrated that the near infrared-red absolute sensitivity is more sensitive as a thermometer than the green-red at the whole temperature range. The device is a promising candidate for high resolution luminescent thermometers operating under temperature of 300~500 K.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+

Xiuna Tian, Xiantao Wei, Yonghu Chen, Changkui Duan, and Min Yin
Opt. Express 22(24) 30333-30345 (2014)

Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior

Wei Xu, Xiaoyang Gao, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao
Opt. Express 20(16) 18127-18137 (2012)

Five-photon UV upconversion emissions of Er3+ for temperature sensing

Kezhi Zheng, Weiye Song, Guanghui He, Zhen Yuan, and Weiping Qin
Opt. Express 23(6) 7653-7658 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
    [Crossref]
  2. L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
    [Crossref]
  3. J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
    [Crossref]
  4. D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
    [Crossref] [PubMed]
  5. A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
    [Crossref]
  6. S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
    [Crossref] [PubMed]
  7. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
    [Crossref]
  8. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
    [Crossref]
  9. J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).
  10. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref] [PubMed]
  11. X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
    [Crossref] [PubMed]
  12. W. Xu, Q. Song, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4,” Opt. Lett. 39(16), 4635–4638 (2014).
    [Crossref] [PubMed]
  13. X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
    [Crossref] [PubMed]
  14. S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
    [Crossref] [PubMed]
  15. R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
    [Crossref]
  16. D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
    [Crossref]
  17. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
    [Crossref]
  18. A. Pandey and V. K. Rai, “Rare earth doped materials for temperature sensors,” Spectroscopic Techniques for Security Foren-sic and Environmental Applications, Nova Publisher, USA, 279–292 (2014).
  19. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  20. K. T. Grattan and Z. Y. Zhang, Fiber optic fluorescence thermometry (Springer Science & Business Media, 1995).
  21. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  22. S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
    [Crossref]
  23. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  24. P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
    [Crossref]
  25. A. K. Singh, “Ho3+:TeO2 glass, a probe for temperature measurements,” Sens. Actuators A Phys. 136(1), 173–177 (2007).
    [Crossref]
  26. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
    [Crossref]
  27. X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
    [Crossref] [PubMed]
  28. S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
    [Crossref]
  29. S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
    [Crossref]
  30. Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
    [Crossref]
  31. B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
    [Crossref] [PubMed]
  32. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15(19), 1100–1102 (1990).
    [Crossref] [PubMed]
  33. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [Crossref]

2016 (1)

2015 (8)

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
[Crossref]

2014 (3)

2013 (3)

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
[Crossref] [PubMed]

2012 (3)

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

2011 (1)

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

2010 (1)

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
[Crossref] [PubMed]

2008 (1)

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

2007 (2)

A. K. Singh, “Ho3+:TeO2 glass, a probe for temperature measurements,” Sens. Actuators A Phys. 136(1), 173–177 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

2005 (1)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

2004 (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (2)

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2002 (1)

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
[Crossref]

1999 (1)

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

1990 (1)

Agarwal, R.

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
[Crossref] [PubMed]

Alam, S.

Auzel, F.

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Barua, P.

Baxter, G.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Berthou, H.

Bu, Y.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Cai, P.

Cao, W.

W. Xu, Q. Song, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4,” Opt. Lett. 39(16), 4635–4638 (2014).
[Crossref] [PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Chen, D.

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

Chen, G.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Chen, X.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Chen, Y.

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Collins, S.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Dey, R.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

Dong, L.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Du, P.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
[Crossref]

Duan, C.

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

Fan, R.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Feng, J.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Fu, H.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Gazda, M.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Grzyb, T.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Gu, Z.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Guillaume, V.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Hao, S.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Hebbink, G. A.

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

Huang, P.

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

Huskens, J.

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

Jain, D.

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Ji, Z.

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

Jiang, G.

Jiang, S.

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

Jin, S.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Jörgensen, C. K.

Ju, Q.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Jung, Y.

Junjie, Z.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Kumari, A.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

Lei, P.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Li, G.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Li, L.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Li, R.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Li, X.

Li, Y.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Lili, H.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Limin, T.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Lisowski, W.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Liu, C.-S.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, F.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Liu, L.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Liu, Q.

Liu, T.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

Liu, X.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Liu, Y.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Luo, D.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Luo, L.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
[Crossref]

Ma, Y.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Meng, X.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Muscat, J.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Ohtani, B.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Pan, Z.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Peng, A.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Piccione, B.

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
[Crossref] [PubMed]

Qin, L.

Qing, Y.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Qiu, H.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Rai, V. K.

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Raudsepp, M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Ren, W.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Reszczynska, J.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Sahu, J. K.

Seo, H. J.

Singh, A. K.

A. K. Singh, “Ho3+:TeO2 glass, a probe for temperature measurements,” Sens. Actuators A Phys. 136(1), 173–177 (2007).
[Crossref]

Sivakumar, S.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

Sobczak, J. W.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Song, Q.

Song, S.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Soni, A. K.

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

Stouwdam, J. W.

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
[Crossref]

Su, Y.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Tian, G.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Tu, D.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
[Crossref]

van Vugt, L. K.

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Vu, T.

Wade, S.

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, J.

Wang, X.

Wang, Z.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

Wei, X.

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

Xiaoshun, J.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Xing, G.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Xu, C.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Xu, W.

W. Xu, Q. Song, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4,” Opt. Lett. 39(16), 4635–4638 (2014).
[Crossref] [PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Xu, X.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Xuan, Y.

Yan, L.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Yan, X.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
[Crossref] [PubMed]

Yang, C.

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Yang, L.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Yao, J.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Yao, S.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Yin, M.

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

Yin, W.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Yu, J. S.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
[Crossref]

Yu, Y.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Yuhang, L.

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

Zaleska, A.

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Zhang, H.

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Zhang, Z.

W. Xu, Q. Song, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4,” Opt. Lett. 39(16), 4635–4638 (2014).
[Crossref] [PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Zhao, H.

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Zhao, M.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Zhao, Y.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Zhao, Y. S.

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Zheng, J.

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
[Crossref] [PubMed]

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Zheng, L.

W. Xu, Q. Song, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4,” Opt. Lett. 39(16), 4635–4638 (2014).
[Crossref] [PubMed]

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

Zheng, Y.

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

Zhou, L.

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Zhou, S.

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
[Crossref] [PubMed]

Zhou, Y.

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

Zhu, H.

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

X. Xu, Z. Wang, P. Lei, Y. Yu, S. Yao, S. Song, X. Liu, Y. Su, L. Dong, J. Feng, and H. Zhang, “α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “Band-Shape” Luminescent Nanothermometers over a Wide Temperature Range,” ACS Appl. Mater. Interfaces 7(37), 20813–20819 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. S. Zhao, A. Peng, H. Fu, Y. Ma, and J. Yao, “Nanowire waveguides and ultraviolet lasers based on small organic molecules,” Adv. Mater. 20(9), 1661–1665 (2008).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

D. Tu, L. Liu, Q. Ju, Y. Liu, H. Zhu, R. Li, and X. Chen, “Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals,” Angew. Chem. Int. Ed. Engl. 50(28), 6306–6310 (2011).
[Crossref] [PubMed]

Appl. Catal. B (1)

J. Reszczyńska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, “Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts,” Appl. Catal. B 163, 40–49 (2015).
[Crossref]

Appl. Phys. B (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[Crossref]

Chem. Mater. (1)

J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media,” Chem. Mater. 15(24), 4604–4616 (2003).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Eur. J. Inorg. Chem. (1)

L. Yang, G. Li, M. Zhao, J. Zheng, D. Luo, Y. Zheng, and L. Li, “Intrinsic Reason for the Morphology Dependence of Luminescent Behavior: A Case Study with GdVO4:Eu3+ Nanocrystals,” Eur. J. Inorg. Chem. 2013(35), 5999–6008 (2013).
[Crossref]

J. Alloys Compd. (3)

D. Chen, Z. Wang, Y. Zhou, P. Huang, and Z. Ji, “Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior,” J. Alloys Compd. 646, 339–344 (2015).
[Crossref]

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
[Crossref]

S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloys Compd. 588, 654–657 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

S. Sivakumar, F. C. J. M. van Veggel, and M. Raudsepp, “Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Mater. Chem. (1)

W. Yin, L. Zhou, Z. Gu, G. Tian, S. Jin, L. Yan, X. Liu, G. Xing, W. Ren, F. Liu, Z. Pan, and Y. Zhao, “Lanthanide-doped GdVO4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging,” J. Mater. Chem. 22(14), 6974–6981 (2012).
[Crossref]

Mater. Chem. Phys. (1)

S. Hao, G. Chen, H. Qiu, C. Xu, R. Fan, X. Meng, and C. Yang, “Controlled growth along circumferential edge and upconverting luminescence of β-NaYF4: 20%Yb3+, 1%Er3+ microcrystals,” Mater. Chem. Phys. 137(1), 97–102 (2012).
[Crossref]

Nano Lett. (2)

B. Piccione, L. K. van Vugt, and R. Agarwal, “Propagation loss spectroscopy on single nanowire active waveguides,” Nano Lett. 10(6), 2251–2256 (2010).
[Crossref] [PubMed]

J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles,” Nano Lett. 2(7), 733–737 (2002).
[Crossref]

Nanoscale (1)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

S. Wade, J. Muscat, S. Collins, and G. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

RSC Advances (2)

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
[Crossref]

A. K. Soni, R. Dey, and V. K. Rai, “Stark sublevels in Tm3+-Yb3+ codoped Na2Y2B2O7 nanophosphor for multifunctional applications,” RSC Advances 5(44), 34999–35009 (2015).
[Crossref]

Sens. Actuators A Phys. (1)

A. K. Singh, “Ho3+:TeO2 glass, a probe for temperature measurements,” Sens. Actuators A Phys. 136(1), 173–177 (2007).
[Crossref]

Sens. Actuators B Chem. (2)

W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, “Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4,” Sens. Actuators B Chem. 188, 1096–1100 (2013).
[Crossref]

R. Dey, A. Kumari, A. K. Soni, and V. K. Rai, “CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing,” Sens. Actuators B Chem. 210, 581–588 (2015).
[Crossref]

Other (3)

A. Pandey and V. K. Rai, “Rare earth doped materials for temperature sensors,” Spectroscopic Techniques for Security Foren-sic and Environmental Applications, Nova Publisher, USA, 279–292 (2014).

J. Xiaoshun, Y. Qing, V. Guillaume, L. Yuhang, T. Limin, Z. Junjie, and H. Lili, “Demonstration of microfiber knot laser,” (2006).

K. T. Grattan and Z. Y. Zhang, Fiber optic fluorescence thermometry (Springer Science & Business Media, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of prepare rare earth nanocrystals incorporated within a SiO2 capillary tube.
Fig. 2
Fig. 2 Schematic diagram of experimental setup.
Fig. 3
Fig. 3 The characteristic of images. (a) XRD and SEM (insert image) of β-NaLuF4: Yb3+/Ho3+; (b) SEM of micro-tube after stretched.
Fig. 4
Fig. 4 UC spectra of the micro-tube under different pump power densities at 350 K.
Fig. 5
Fig. 5 a-d) PL image of a single micro-tube. PL image were collected upon excitation at different positions; e) Normalized dependence of the endface out-couple emission intensity on excitation location. The line is an exponential fit to the data yielding the loss coefficient for the waveguide; f) The PL emission spectra of single micro-tube.
Fig. 6
Fig. 6 UC spectra in the range from 500 nm to 750 nm at various temperatures located 300 K to 500 K.
Fig. 7
Fig. 7 The fluorescence intensity ratio vs. temperature ranges from 300 K to 500 K. (a) I750/I650. (b) I545/I650.
Fig. 8
Fig. 8 Absolute temperature sensitivity of micro-tube waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FIR= I U I L =a*exp(ΔE/kT)+b
S ai = 1 FI R i dFI R i dT = Δ E i k T 2

Metrics