Abstract

We have optically investigated the characteristics of concentration quenching in epitaxial (ErxSc1-x)2O3 layers at the liquid helium temperature as a function of the Er composition (x = 1.000-0.012). Concentration quenching with increasing Er composition was observed at the lowest optical transition energy, although emission lifetimes of 2 ms were maintained from x = 0.012 to 0.270. An analysis of the excitation power dependence of the emission intensity at the lowest and up-converted transition energies revealed that the concentration quenching in high-quality epitaxial (ErxSc1-x)2O3 films mainly originates from the population escaping to the up-conversion states with a high transfer rate, not the population transfer among Er3+ sites to non-radiative centers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet and visible upconversion luminescence in Y2O3:Er3+, Gd3+ microcrystals by 1.55  μm excitation

Yuhong Zhang, Shuibing Li, Feng Qin, Zhiguo Zhang, and Zhenwen Dai
J. Opt. Soc. Am. B 32(9) 1856-1860 (2015)

Growth, processing, and optical properties of epitaxial Er2O3 on silicon

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter
Opt. Express 16(24) 19649-19666 (2008)

References

  • View by:
  • |
  • |
  • |

  1. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 laser,” Opt. Mater. Express 1(3), 503–513 (2011).
    [Crossref]
  2. S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
    [Crossref]
  3. L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
    [Crossref]
  4. A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
    [Crossref]
  5. M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
    [Crossref] [PubMed]
  6. T.-M. Pan and W.-S. Huang, “Physical and electrical characteristics of a high-k Yb2O3 gate dielectric,” Appl. Surf. Sci. 255(9), 4979–4982 (2009).
    [Crossref]
  7. C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, “Growth, processing, and optical properties of epitaxial Er2O3 on silicon,” Opt. Express 16(24), 19649–19666 (2008).
    [Crossref] [PubMed]
  8. T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
    [Crossref]
  9. F. Auzel, “Up-conversion in RE-doped Solids” in Spectroscopic Properties of Rare Earths in Optical Materials, G. Liu, and B. Jacquier, eds. (Springer-Verlag, Berlin, 2005).
  10. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
    [Crossref]
  11. J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
    [Crossref]
  12. J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
    [Crossref]
  13. I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
    [Crossref]
  14. M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
    [Crossref]
  15. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
    [Crossref]
  16. T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
    [Crossref]
  17. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
    [Crossref]
  18. H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics,” Photon. Res. 2(3), A45 (2014).
    [Crossref]
  19. S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
    [Crossref]
  20. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  21. K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
    [Crossref]

2015 (1)

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

2014 (2)

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics,” Photon. Res. 2(3), A45 (2014).
[Crossref]

2013 (2)

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

2012 (1)

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

2011 (1)

2010 (2)

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

2009 (1)

T.-M. Pan and W.-S. Huang, “Physical and electrical characteristics of a high-k Yb2O3 gate dielectric,” Appl. Surf. Sci. 255(9), 4979–4982 (2009).
[Crossref]

2008 (4)

C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, “Growth, processing, and optical properties of epitaxial Er2O3 on silicon,” Opt. Express 16(24), 19649–19666 (2008).
[Crossref] [PubMed]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

2004 (1)

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

1999 (1)

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

1996 (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Adachi, S.

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Atanackovic, P. B.

Burdick, G. W.

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

Chandra, S.

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

Chang, X.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Chen, K.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Choy, K.

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Clark, A.

Dammak, M.

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Duan, X.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Dubinskii, M.

Fromzel, V.

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Gheorghe, C.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

Gotoh, H.

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Gruber, J. B.

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Gu, Z.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Henneberger, F.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Hong, M.

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Hozumi, T.

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Huang, W.-S.

T.-M. Pan and W.-S. Huang, “Physical and electrical characteristics of a high-k Yb2O3 gate dielectric,” Appl. Surf. Sci. 255(9), 4979–4982 (2009).
[Crossref]

Huc, Z.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Ikesue, A.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

Isshiki, H.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics,” Photon. Res. 2(3), A45 (2014).
[Crossref]

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

Jamora, A.

Jin, S.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Jing, F.

Johnson, T. J.

Kaji, R.

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Kalusniak, S.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Kamoun, M.

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

Kawakami, Y.

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Kimerling, L. C.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Kimura, T.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics,” Photon. Res. 2(3), A45 (2014).
[Crossref]

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

Kortan, A. R.

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Kuznetsov, A. S.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Kwo, J.

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Lenz, F.

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Li, W.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Liang, X. X.

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Lipson, M.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Liu, X.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Lupei, A.

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Maâlej, R.

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

Mannaerts, J. P.

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Marsiglio, F.

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Meldrum, A.

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Merkle, L. D.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Michael, C. P.

Michel, J.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Nakajima, T.

H. Isshiki, F. Jing, T. Sato, T. Nakajima, and T. Kimura, “Rare earth silicates as gain media for silicon photonics,” Photon. Res. 2(3), A45 (2014).
[Crossref]

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

Nash, K. L.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Omi, H.

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Painter, O.

Pan, T.-M.

T.-M. Pan and W.-S. Huang, “Physical and electrical characteristics of a high-k Yb2O3 gate dielectric,” Appl. Surf. Sci. 255(9), 4979–4982 (2009).
[Crossref]

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Ren, W.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Sabnis, V. A.

Sadofev, S.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Saini, S.

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

Sardar, D. K.

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Sato, T.

Schäfer, P.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Semans, S.

Sergent, A. M.

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Sewell, R.

Smith, R.

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Sogawa, T.

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Tanaka, Y.

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

Tawara, T.

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

Ter-Gabrielyan, N.

N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 laser,” Opt. Mater. Express 1(3), 503–513 (2011).
[Crossref]

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Tian, G.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Trabelsi, I.

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

Valiev, U. V.

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

Xing, G.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Yan, L.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Yin, W.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Yuen, H. B.

Zhao, Y.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Zhou, L.

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

Appl. Phys. Lett. (3)

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

T. Tawara, H. Omi, T. Hozumi, R. Kaji, S. Adachi, H. Gotoh, and T. Sogawa, “Population dynamics in epitaxial Er2O3 thin films grown on Si(111),” Appl. Phys. Lett. 102(24), 241918 (2013).
[Crossref]

K. Choy, F. Lenz, X. X. Liang, F. Marsiglio, and A. Meldrum, “Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+,” Appl. Phys. Lett. 93(26), 261109 (2008).
[Crossref]

Appl. Surf. Sci. (1)

T.-M. Pan and W.-S. Huang, “Physical and electrical characteristics of a high-k Yb2O3 gate dielectric,” Appl. Surf. Sci. 255(9), 4979–4982 (2009).
[Crossref]

J. Appl. Phys. (2)

J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+ (4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys. 104(2), 023101 (2008).
[Crossref]

J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, “Analyses of the ultraviolet spectra of Er3+ in Er2O3 and Er3+ in Y2O3,” J. Appl. Phys. 108(2), 023109 (2010).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Electron. Mater. (1)

S. Saini, K. Chen, X. Duan, J. Michel, L. C. Kimerling, and M. Lipson, “Er2O3 for high-gain waveguide amplifiers,” J. Electron. Mater. 33(7), 809–814 (2004).
[Crossref]

J. Lumin. (2)

I. Trabelsi, R. Maâlej, M. Dammak, A. Lupei, and M. Kamoun, “Crystal field analysis of Er3+ in Sc2O3 transparent ceramics,” J. Lumin. 130(6), 927–931 (2010).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128(5–6), 918–920 (2008).
[Crossref]

J. Mater. Chem. (1)

L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Huc, and Y. Zhao, “Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging,” J. Mater. Chem. 22(3), 966–974 (2012).
[Crossref]

J. Phys. Conf. Ser. (1)

S. Adachi, Y. Kawakami, R. Kaji, T. Tawara, and H. Omi, “Energy transfers in telecommunication-band region of (Sc,Er)2O3 thin films grown on Si(111),” J. Phys. Conf. Ser. 647, 012031 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nakajima, Y. Tanaka, T. Kimura, and H. Isshiki, “Role of energy migration in nonradiative relaxation processes in ErxY2-xSiO5 crystalline thin films,” Jpn. J. Appl. Phys. 52(8R), 082601 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5(3), 159–167 (1996).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

PRB (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” PRB 61(5), 3337–3346 (2000).
[Crossref]

Science (1)

M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation,” Science 283(5409), 1897–1900 (1999).
[Crossref] [PubMed]

Other (1)

F. Auzel, “Up-conversion in RE-doped Solids” in Spectroscopic Properties of Rare Earths in Optical Materials, G. Liu, and B. Jacquier, eds. (Springer-Verlag, Berlin, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Unit cell of bixbyite (ErSc)2O3 crystal. In this schematic, Er3+ at the C2 site are replaced by Sc3+. (b) XRD ω-2θ scan. Red and black curves show x = 1.000 and 0.027, respectively. (c) Cross-sectional TEM image of grown (ErSc)2O3. (d) Energy diagram of Er3+ ions in Y2O3 (Ref. 11).
Fig. 2
Fig. 2 (a) PL spectra of various Er compositions under the resonant excitation of the assigned Y’3 level in the C3i site. (b) PL peak intensity and FWHM of the Y’1-Z’1 transition as a function of Er composition. The dotted curves are guides for the eye. (c) Time-resolved PL of (ErxSc1−x)2O3 with x = 1.000 and 0.054, detected at the Y’1-Z’1 transition. Red curves show the calculated results by using Eq. (1) with the parameters in Table 2. (d) Er composition dependence of PL decay time.
Fig. 3
Fig. 3 PLE color plots of Er2O3 detected at (a) 4S3/2 and (b) 4I13/2 manifolds under 4I13/2 manifold excitation. The noise of the center part in the PLE color plots at the 4I13/2 manifold is caused by scattering from the excitation laser. UC spectra of (ErxSc1-x)2O3 with (c) x = 1.000, (d) 0.054 and (e) 0.012, respectively. The spectrum intensity of (c) and (d) is multiplied by 6 and 35, respectively.
Fig. 4
Fig. 4 (a)-(c) Integrated PL intensity of the transition from the 4I13/2 manifold and UCSs to the ground energy level of 4I15/2 manifold. Red, black and blue filled circles indicate the transition from the 4I13/2 manifold in the C2 and C3i sites and UCSs to the 4I15/2 manifold, respectively. (d) Calculation model for the rate equation analysis.

Tables (2)

Tables Icon

Table 1 Summary of the number of Er3+ ions per unit cell, the Er3+ density, and the average distance for grown (ErxSc1-x)2O3 samples.

Tables Icon

Table 2 Summary of the measured values (Ai) and obtained transfer rates (Bij) in ms−1 units.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d n 0 / dt= B 31 n 3 n 0 + B 13 n 1 n 2 + A 1 n 1 , d n 1 / dt = B 31 n 3 n 0 B 13 n 1 n 2 A 1 n 1 , d n 2 / dt=Γ+ B 34 n 3 2 + B 31 n 3 n 0 B 13 n 1 n 2 + A 3 n 3 + A 4 n 4 , d n 3 / dt =Γ2 B 34 n 3 2 B 31 n 3 n 0 + B 13 n 1 n 2 A 3 n 3 , d n 4 / dt = B 34 n 3 2 A 4 n 4 ,

Metrics