Abstract

Optical and electrical properties of silver nanowire transparent conductive films with a broad range of nanowire lengths were studied. A proposed simulation model demonstrated similar behavior with experimental results for 30 and 90 μm nanowires, and thus it was used to expand the range of nanowire lengths from 10 to 200 μm. Theoretical results show that a lengthening of silver nanowires results in an increase of their optoelectronic performance; 200 μm long nanowire possess 13.5 times lower sheet resistance compared to 10 μm ones, while the transmittance remains similar for coverage densities of nanowires up to 25%. Moreover, the dependence of the sheet resistance on the length of nanowires changes non-linearly; from 10 to 20 µm, 20 to 80 µm and 80 to 200 µm the sheet resistance drops by a factor of 5, 2.25 and 1.2 respectively. Furthermore, a thickening of nanowire diameters from 30 to 90 nm decreases the sheet resistance to 5.8 times. Obtained results allow a deeper analysis of the silver nanowire transparent conductive films from the perspective of the length of nanowires for various optoelectronic applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization properties of silver nanowire/polymer composite films: diattenuation, retardance and depolarization

Takeo Tomiyama, Kensuke Yoshihara, and Hiroshi Yamazaki
Opt. Mater. Express 9(6) 2582-2594 (2019)

Low-visibility patterning of transparent conductive silver-nanowire films

Eun-Hyoung Cho, Jinyoung Hwang, Jaekwan Kim, Jooho Lee, Chan Kwak, and Chang Seung Lee
Opt. Express 23(20) 26095-26103 (2015)

Flexibility and non-destructive conductivity measurements of Ag nanowire based transparent conductive films via terahertz time domain spectroscopy

Gyujeong Hwang, Soner Balci, M. Zeki Güngördü, Alex Maleski, Joseph Waters, Sunjong Lee, Sangjun Choi, Kyoungkook Kim, Soohaeng Cho, and Seongsin M. Kim
Opt. Express 25(4) 4500-4508 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
    [Crossref] [PubMed]
  2. T. H. Seo, A. H. Park, S. Park, S. Chandramohan, G. H. Lee, M. J. Kim, C.-H. Hong, and E.-K. Suh, “Improving the graphene electrode performance in ultra-violet light emitting diode using silver nanowire networks,” Opt. Mater. Express 5(2), 314–322 (2015).
    [Crossref]
  3. D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
    [Crossref] [PubMed]
  4. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [Crossref] [PubMed]
  5. H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
    [Crossref]
  6. M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
    [Crossref] [PubMed]
  7. J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
    [Crossref]
  8. G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
    [Crossref]
  9. Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
    [Crossref]
  10. K. Ghaffarzadeh and R. Das, “Transparent conductive films (TCF) 2016-2026: forecasts, markets, technologies,” http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2016-2026-forecasts-markets-technologies-000480.asp
  11. J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
    [Crossref] [PubMed]
  12. C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
    [Crossref]
  13. S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
    [Crossref] [PubMed]
  14. A. Hubarevich, M. Marus, W. Fan, A. Smirnov, X. W. Sun, and H. Wang, “Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers,” Opt. Express 23(14), 17860–17865 (2015).
    [Crossref] [PubMed]
  15. W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
    [Crossref] [PubMed]
  16. A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
    [Crossref]
  17. A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
    [Crossref] [PubMed]
  18. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
    [Crossref] [PubMed]
  19. D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
    [Crossref] [PubMed]
  20. J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
    [Crossref] [PubMed]
  21. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  22. J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
    [Crossref]
  23. Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
    [Crossref]
  24. L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
    [Crossref] [PubMed]
  25. G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
    [Crossref] [PubMed]
  26. Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
    [Crossref] [PubMed]
  27. Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
    [Crossref] [PubMed]
  28. Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
    [Crossref]
  29. W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
    [Crossref] [PubMed]
  30. M. Marus, A. Hubarevich, H. Wang, A. Stsiapanau, A. Smirnov, X. W. Sun, and W. Fan, “Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers,” Opt. Express 23(20), 26794–26799 (2015).
    [Crossref] [PubMed]
  31. M. Jagota and N. Tansu, “Conductivity of nanowire arrays under random and ordered orientation configurations,” Sci. Rep. 5, 10219 (2015).
    [Crossref] [PubMed]
  32. M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
    [Crossref] [PubMed]
  33. M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).
  34. C. Preston and L. Hu, “Silver nanowires,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, (Springer, 2016).
  35. Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
    [Crossref]
  36. F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
    [Crossref] [PubMed]
  37. Lumerical FDTD Solutions, Available from: https://www.lumerical.com/tcad-products/fdtd/ .
  38. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1998).
  39. B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
    [Crossref]
  40. J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
    [Crossref]
  41. S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
    [Crossref]
  42. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  43. L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
    [Crossref]
  44. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
    [Crossref] [PubMed]
  45. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref] [PubMed]
  46. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
    [Crossref] [PubMed]
  47. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  48. M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
    [Crossref]
  49. B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
    [Crossref] [PubMed]

2016 (4)

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

2015 (14)

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

M. Marus, A. Hubarevich, H. Wang, A. Stsiapanau, A. Smirnov, X. W. Sun, and W. Fan, “Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers,” Opt. Express 23(20), 26794–26799 (2015).
[Crossref] [PubMed]

M. Jagota and N. Tansu, “Conductivity of nanowire arrays under random and ordered orientation configurations,” Sci. Rep. 5, 10219 (2015).
[Crossref] [PubMed]

M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

A. Hubarevich, M. Marus, W. Fan, A. Smirnov, X. W. Sun, and H. Wang, “Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers,” Opt. Express 23(14), 17860–17865 (2015).
[Crossref] [PubMed]

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
[Crossref]

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

T. H. Seo, A. H. Park, S. Park, S. Chandramohan, G. H. Lee, M. J. Kim, C.-H. Hong, and E.-K. Suh, “Improving the graphene electrode performance in ultra-violet light emitting diode using silver nanowire networks,” Opt. Mater. Express 5(2), 314–322 (2015).
[Crossref]

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

2014 (5)

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

2013 (5)

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(103), A355–A362 (2013).
[Crossref] [PubMed]

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

2012 (3)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[Crossref]

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

2011 (4)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[Crossref]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

2010 (2)

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

2008 (1)

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

2006 (2)

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

1974 (1)

J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
[Crossref]

1973 (1)

S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[Crossref]

1971 (1)

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Akinoglu, E. M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Aryal, M.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Barnes, T. M.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bergin, S. M.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

Cai, Z.-J.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Cai, Z.-Q.

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Chandramohan, S.

Chang, Y.-T.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Chen, J.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Chen, K.-Y.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Chen, Y.-H.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Cho, B.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Cho, S.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Choe, A.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Choi, D. Y.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Choi, K.

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

Choi, W. K.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Coe, J. V.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Coutts, T. J.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Cui, Y.

L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[Crossref]

Das, R.

K. Ghaffarzadeh and R. Das, “Transparent conductive films (TCF) 2016-2026: forecasts, markets, technologies,” http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2016-2026-forecasts-markets-technologies-000480.asp

Demir, H. V.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Du, Q. G.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Emmott, C. J. M.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[Crossref]

Fan, H. J.

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Fan, W.

Fitzpatrick, J.

J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
[Crossref]

Fu, G.-L.

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Gao, H.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Gao, J.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Geddes, J.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Ghaffarzadeh, K.

K. Ghaffarzadeh and R. Das, “Transparent conductive films (TCF) 2016-2026: forecasts, markets, technologies,” http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2016-2026-forecasts-markets-technologies-000480.asp

Giersig, M.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Glatkowski, P.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

González-García, L.

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

Grigoropoulos, C. P.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Gu, G.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Gu, M.

Han, B.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Han, S.-H.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Hao, J.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Heer, J. M.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Ho, Y.-H.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Hong, C.-H.

Hong, S.

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[Crossref]

Hu, Y.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Hua, Y. L.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

Huang, D.-W.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Huang, H.

M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

Huang, K.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Huang, S.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Hubarevich, A.

Hwang, D. K.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Jagota, M.

M. Jagota and N. Tansu, “Conductivity of nanowire arrays under random and ordered orientation configurations,” Sci. Rep. 5, 10219 (2015).
[Crossref] [PubMed]

Jeong, G.-J.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Jeong, Y.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Jia, B.

Jin, S.-H.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Jin, W.-Y.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Jo, S.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Ju, B.-K.

Kam, C. H.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Kamyshny, A.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Kanelidis, I.

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

Kang, H. W.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Kang, J.-W.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Kang, S.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Kempa, K.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Kholid, F. N.

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

Kim, C. S.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Kim, D.-H.

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Kim, E.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Kim, J. Y.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Kim, J.-W.

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

Kim, M. J.

Kim, S. S.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Kim, T.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Kim, Y.

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

Kirkpatrick, S.

S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[Crossref]

Ko, H.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Ko, S. H.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Ko, S.-J.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Kobrin, B.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Kraus, T.

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

Kwon, J.-D.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Kwon, S.-H.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Last, B.

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Layani, M.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Lee, D.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Lee, G. H.

Lee, H.

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

Lee, H. M.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Lee, J.-H.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Lee, S.-N.

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Lee, Y.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Lee, Y. T.

Levitsky, I.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Li, R.

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Li, Z. Y.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

Li, Z.-B.

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Lim, D.-S.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

Lim, J. W.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

Liu, G.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Liu, G.-Q.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Liu, S.-W.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Liu, X.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Liu, X.-S.

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Liu, Z.-Q.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Magdassi, S.

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

Malt, R.

J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
[Crossref]

Marus, M.

Maurer, J. H.

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

McMackin, I.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Mukha, Y.

M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).

Nam, K.-S.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Nam, S.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Nelson, J.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[Crossref]

Nie, Y.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Oh, Y. J.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

Ouyang, Z.

Paeng, D.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Pandey, R.

Park, A. H.

Park, S.

Park, S.-G.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Park, Y. C.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Peltola, J.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Qiu, C.-W.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Qiu, M.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Rathmell, A. R.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

Reiser, B.

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

Rodriguez, K. R.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Rumbles, G.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Sang, B.-I.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

Sathiyamoorthy, K.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Seitz, O.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Seo, T. H.

Shaheen, S. E.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Smirnov, A.

Song, M.

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

Spaepen, F.

J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Stsiapanau, A.

M. Marus, A. Hubarevich, H. Wang, A. Stsiapanau, A. Smirnov, X. W. Sun, and W. Fan, “Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers,” Opt. Express 23(20), 26794–26799 (2015).
[Crossref] [PubMed]

A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
[Crossref]

Suh, E.-K.

Sun, X.

M. Marus, A. Hubarevich, H. Wang, A. Smirnov, X. Sun, and W. Fan, “Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods,” Opt. Express 23(5), 6209–6214 (2015).
[Crossref] [PubMed]

A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
[Crossref]

Sun, X. W.

M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).

M. Marus, A. Hubarevich, H. Wang, A. Stsiapanau, A. Smirnov, X. W. Sun, and W. Fan, “Comparative analysis of opto-electronic performance of aluminium and silver nano-porous and nano-wired layers,” Opt. Express 23(20), 26794–26799 (2015).
[Crossref] [PubMed]

A. Hubarevich, M. Marus, W. Fan, A. Smirnov, X. W. Sun, and H. Wang, “Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers,” Opt. Express 23(14), 17860–17865 (2015).
[Crossref] [PubMed]

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Sung, H. J.

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Tansu, N.

M. Jagota and N. Tansu, “Conductivity of nanowire arrays under random and ordered orientation configurations,” Sci. Rep. 5, 10219 (2015).
[Crossref] [PubMed]

Teeters-Kennedy, S.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Thouless, D.

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Tian, H.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Tian, J.-G.

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Urbina, A.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[Crossref]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

van de Lagemaat, J.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Walker, B.

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Wang, B.-Y.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

Wang, H.

Wassei, J.

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

Weeks, C.

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

Wei, P.-K.

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Wiley, B. J.

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

Wu, H.

L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[Crossref]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Xie, S.

Yan, W.-G.

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Yang, K.

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

Ye, H.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Yeo, J.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Yeo, S. P.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Yoo, J. H.

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Yoo, T.-H.

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

J. W. Lim, Y. T. Lee, R. Pandey, T.-H. Yoo, B.-I. Sang, B.-K. Ju, D. K. Hwang, and W. K. Choi, “Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells,” Opt. Express 22(22), 26891–26899 (2014).
[Crossref] [PubMed]

Yu, K.-C.

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

Yuan, W.

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

Zhang, L. P.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, X.-G.

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

Zhang, X.-N.

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Zhang, Y.

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

Zhao, J.

A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
[Crossref]

Zhou, H.-Q.

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Zouhdi, S.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

D.-H. Kim, K.-C. Yu, Y. Kim, and J.-W. Kim, “Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea,” ACS Appl. Mater. Interfaces 7(28), 15214–15222 (2015).
[Crossref] [PubMed]

Adv. Mater. (4)

A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Adv. Mater. 22(32), 3558–3563 (2010).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko, and C. P. Grigoropoulos, “Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation,” Adv. Mater. 27(17), 2762–2767 (2015).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process,” Adv. Mater. 14(11), 833–837 (2002).
[Crossref]

Adv. Phys. (1)

J. Gao, K. Kempa, M. Giersig, E. M. Akinoglu, B. Han, and R. Li, “Physics of transparent conductors,” Adv. Phys. 65(6), 553–617 (2016).
[Crossref]

Annu. Rev. Phys. Chem. (1)

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, “Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode,” Appl. Phys. Lett. 88(23), 233503 (2006).
[Crossref]

G.-J. Jeong, J.-H. Lee, S.-H. Han, W.-Y. Jin, J.-W. Kang, and S.-N. Lee, “Silver nanowires for transparent conductive electrode to GaN-based light-emitting diodes,” Appl. Phys. Lett. 106(3), 031118 (2015).
[Crossref]

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography,” Appl. Phys. Lett. 88(14), 143112 (2006).
[Crossref]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Dig. Tech. Pap. (1)

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, ““Sub‐micron transparent metal mesh conductor for touch screen displays,” in SID Symposium,” Dig. Tech. Pap. 45(1), 194–196 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z.-Q. Liu, G.-Q. Liu, K. Huang, Y.-H. Chen, Y. Hu, X.-G. Zhang, and Z.-Q. Cai, “Enhanced Optical Transmission of a Continuous Metal Film With Double Metal Cylinder Arrays,” IEEE Photonics Technol. Lett. 25(12), 1157–1160 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (2)

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

W.-G. Yan, Z.-B. Li, and J.-G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

MRS Bull. (1)

L. Hu, H. Wu, and Y. Cui, “Metal nanogrids, nanowires, and nanofibers for transparent electrodes,” MRS Bull. 36(10), 760–765 (2011).
[Crossref]

Nano Lett. (4)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

J. H. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S.-J. Ko, J. Y. Kim, and H. Ko, “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 15(12), 7933–7942 (2015).
[Crossref] [PubMed]

Nanoscale (3)

M. Layani, A. Kamyshny, and S. Magdassi, “Transparent conductors composed of nanomaterials,” Nanoscale 6(11), 5581–5591 (2014).
[Crossref] [PubMed]

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C.-W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref] [PubMed]

D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, “Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method,” Nanoscale 5(3), 977–983 (2013).
[Crossref] [PubMed]

Nanotechnology (3)

F. N. Kholid, H. Huang, Y. Zhang, and H. J. Fan, “Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network,” Nanotechnology 27(2), 025703 (2016).
[Crossref] [PubMed]

Z.-Q. Liu, G.-Q. Liu, H.-Q. Zhou, X.-S. Liu, K. Huang, Y.-H. Chen, and G.-L. Fu, “Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays,” Nanotechnology 24(15), 155203 (2013).
[Crossref] [PubMed]

Z. Liu, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, and G. Liu, “Optical cavity-assisted broadband optical transparency of a plasmonic metal film,” Nanotechnology 26(18), 185701 (2015).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (1)

Org. Electron. (1)

Y.-H. Ho, K.-Y. Chen, S.-W. Liu, Y.-T. Chang, D.-W. Huang, and P.-K. Wei, “Transparent and conductive metallic electrodes fabricated by using nanosphere lithography,” Org. Electron. 12(6), 961–965 (2011).
[Crossref]

Phys. Chem. Chem. Phys. (1)

G.-Q. Liu, Y. Hu, Z.-Q. Liu, Y.-H. Chen, Z.-J. Cai, X.-N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Phys. Lett. A (1)

J. Fitzpatrick, R. Malt, and F. Spaepen, “Percolation theory and the conductivity of random close packed mixtures of hard spheres,” Phys. Lett. A 47(3), 207–208 (1974).
[Crossref]

Phys. Rev. Lett. (1)

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

A. Hubarevich, M. Marus, A. Stsiapanau, A. Smirnov, J. Zhao, W. Fan, H. Wang, and X. Sun, “Transparent conductive nanoporous aluminium mesh prepared by electrochemical anodizing,” Phys. Status Solidi., A Appl. Mater. Sci. 212(10), 2174–2178 (2015).
[Crossref]

Rev. Mod. Phys. (1)

S. Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[Crossref]

Sci. Rep. (2)

S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Sci. Rep. 4, 4788 (2014).
[Crossref] [PubMed]

M. Jagota and N. Tansu, “Conductivity of nanowire arrays under random and ordered orientation configurations,” Sci. Rep. 5, 10219 (2015).
[Crossref] [PubMed]

Small (1)

B.-Y. Wang, T.-H. Yoo, J. W. Lim, B.-I. Sang, D.-S. Lim, W. K. Choi, D. K. Hwang, and Y. J. Oh, “Enhanced light scattering and trapping effect of Ag nanowire mesh electrode for high efficient flexible organic solar cell,” Small 11(16), 1905–1911 (2015).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[Crossref]

Thin Solid Films (1)

M. Marus, A. Hubarevich, H. Wang, Y. Mukha, A. Smirnov, H. Huang, W. Fan, and X. W. Sun, “Towards theoretical analysis of optoelectronic performance of uniform and random metallic nanowire layers,” Thin Solid Films 626, 140–144 (2016).

Other (4)

C. Preston and L. Hu, “Silver nanowires,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, (Springer, 2016).

K. Ghaffarzadeh and R. Das, “Transparent conductive films (TCF) 2016-2026: forecasts, markets, technologies,” http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2016-2026-forecasts-markets-technologies-000480.asp

Lumerical FDTD Solutions, Available from: https://www.lumerical.com/tcad-products/fdtd/ .

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Geometrical models of metallic NW films with different length of NWs on PET substrate. Red rectangles represent 15 × 15µm2 unit simulation areas.
Fig. 2
Fig. 2 (a) Transmittance at 550 nm against the sheet resistance for different lengths of AgNWs. The diameter of NWs is 60 nm for both experimental (E) and theoretical (T) data. (b) SEM image for AgNWs with length L = 90 mm and diameter d = 60 nm.
Fig. 3
Fig. 3 (a) Transmittance spectra of AgNW films for various coverage densities D and lengths L of NWs. (b) Calculated electric field distribution for 200 µm (left) and 10 µm (right) long AgNW films at 550 nm wavelength. (c) Transmittance spectra of AlNW films for various coverage densities D and length L of NWs. The diameter d of NWs is 60 nm for all cases.
Fig. 4
Fig. 4 (a) Sheet resistance of AgNWs films versus length of NWs for various coverage densities D. The diameter of NWs is 60 nm. (b) Sheet resistance of AgNWs films versus diameter of NWs for various length L. The coverage density D is 25%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R sh = 1 h σ 0 ( ϕ f ϕ crit ) t ,
ϕ f ϕ crit = ( N i * N crit ) V c V uc ,

Metrics