Abstract

When used as optical parametric oscillators, CdSiP2 crystals generate tunable output in the mid-infrared. Their performance, however, is often limited by unwanted optical absorption bands that overlap the pump wavelengths. A broad defect-related optical absorption band peaking near 800 nm, with a shoulder near 1 µm, can be photoinduced at room temperature in many CdSiP2 crystals. This absorption band is efficiently produced with 633 nm laser light and decays with a lifetime of ∼0.5 s after removal of the excitation light. The 800 nm band is accompanied by a less intense absorption band peaking near 1.90 µm. Data from eight CdSiP2 crystals grown at different times show that the singly ionized silicon vacancy (VSi) is responsible for the photoinduced absorption bands. Electron paramagnetic resonance (EPR) is used to identify and directly monitor these silicon vacancies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual role of Sb ions as electron traps and hole traps in photorefractive Sn2P2S6 crystals

B. E. Kananen, E. M. Golden, S. A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, J. W. McClory, N. C. Giles, and L. E. Halliburton
Opt. Mater. Express 6(12) 3992-3999 (2016)

Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2

S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh
J. Opt. Soc. Am. B 33(11) D44-D56 (2016)

Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP2

S. Chaitanya Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh
Opt. Express 20(14) 15703-15709 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
  2. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).
  3. S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33(11), D44–D56 (2016).
  4. F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).
  5. S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).
  6. Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).
  7. G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90° phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm,” Opt. Lett. 37(15), 3219–3221 (2012).
  8. V. Petrov, P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, “Noncritical singly resonant optical parametric oscillator operation near 6.2µm based on a CdSiP2 crystal pumped at 1064 nm,” Opt. Lett. 34(16), 2399–2401 (2009).
  9. K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).
  10. L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).
  11. G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).
  12. J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).
  13. Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).
  14. E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).
  15. N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).
  16. S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).
  17. N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).
  18. S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).
  19. N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).
  20. M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

2016 (5)

2015 (3)

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).

2013 (3)

Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

2012 (1)

2010 (2)

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

2009 (1)

2003 (1)

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

1999 (2)

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

1995 (1)

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

1994 (1)

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Agnesi, A.

Bai, L.

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

Brant, A. T.

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

Budni, P. A.

Chaitanya Kumar, S.

Chen, B.

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Chirila, M. M.

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

Claflin, B.

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

Creeden, D. J.

Cui, H. L.

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Ebrahim-Zadeh, M.

Edwards, G. J.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Esteban-Martin, A.

Fan, L.

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Fernelius, N. C.

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

Garces, N. Y.

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

Giles, N. C.

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

Golden, E. M.

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

Goldstein, J. T.

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

Guha, S.

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

Halliburton, L. E.

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

He, Z.

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Hopkins, F. K.

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Howle, C. R.

Ji, G. F.

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Jiang, G.

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

Kuhn, W. K.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Lauderdale, W. J.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Li, X. H.

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Liu, G.

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Lv, Z. L.

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Maniego, E.

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

Marchev, G.

Ohmer, M. C.

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Petrov, V.

Piccoli, R.

Pirzio, F.

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

V. Petrov, P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, “Noncritical singly resonant optical parametric oscillator operation near 6.2µm based on a CdSiP2 crystal pumped at 1064 nm,” Opt. Lett. 34(16), 2399–2401 (2009).

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Pomeranz, L. A.

Rakowsky, M. H.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Reali, G.

Reid, D. T.

Ruan, H. P.

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

Santana, A.

Schunemann, P. G.

S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).

S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33(11), D44–D56 (2016).

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90° phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm,” Opt. Lett. 37(15), 3219–3221 (2012).

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

V. Petrov, P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, “Noncritical singly resonant optical parametric oscillator operation near 6.2µm based on a CdSiP2 crystal pumped at 1064 nm,” Opt. Lett. 34(16), 2399–2401 (2009).

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Scripsick, M. P.

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Setzler, S. D.

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

Stevens, K. T.

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

Tao, X. T.

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

Tyazhev, A.

Wang, H.

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Wang, S. P.

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

Wang, X.

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Xiao, J.

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

Yang, H.

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Yang, S.

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

Yang, X.

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

Zawilski, K. T.

S. Chaitanya Kumar, P. G. Schunemann, K. T. Zawilski, and M. Ebrahim-Zadeh, “Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2,” J. Opt. Soc. Am. B 33(11), D44–D56 (2016).

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33(11), D36–D43 (2016).

S. Chaitanya Kumar, A. Esteban-Martin, A. Santana, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, “Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6-7 μm based on CdSiP2,” Opt. Lett. 41(14), 3355–3358 (2016).

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

Z. Zhang, D. T. Reid, S. Chaitanya Kumar, M. Ebrahim-Zadeh, P. G. Schunemann, K. T. Zawilski, and C. R. Howle, “Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm,” Opt. Lett. 38(23), 5110–5113 (2013).

G. Marchev, F. Pirzio, R. Piccoli, A. Agnesi, G. Reali, P. G. Schunemann, K. T. Zawilski, A. Tyazhev, and V. Petrov, “Narrow-bandwidth, mid-infrared, seeded optical parametric generation in 90° phase-matched CdSiP2 crystal pumped by diffraction limited 500 ps pulses at 1064 nm,” Opt. Lett. 37(15), 3219–3221 (2012).

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

V. Petrov, P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, “Noncritical singly resonant optical parametric oscillator operation near 6.2µm based on a CdSiP2 crystal pumped at 1064 nm,” Opt. Lett. 34(16), 2399–2401 (2009).

Zelmon, D. E.

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

Zhang, G. D.

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

Zhang, X.

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

Zhang, Z.

Zhao, B.

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Zhu, S.

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

Appl. Phys. Lett. (3)

S. D. Setzler, N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Electron paramagnetic resonance of a cation antisite defect in ZnGeP2,” Appl. Phys. Lett. 74(9), 1218–1220 (1999).

N. C. Giles, L. E. Halliburton, P. G. Schunemann, and T. M. Pollak, “Photoinduced electron paramagnetic resonance of the phosphorus vacancy in ZnGeP2,” Appl. Phys. Lett. 66(14), 1758–1760 (1995).

M. H. Rakowsky, W. K. Kuhn, W. J. Lauderdale, L. E. Halliburton, G. J. Edwards, M. P. Scripsick, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, and F. K. Hopkins, “Electron paramagnetic resonance study of a native acceptor in as-grown ZnGeP2,” Appl. Phys. Lett. 64(13), 1615–1617 (1994).

Comput. Mater. Sci. (1)

J. Xiao, Z. He, S. Zhu, B. Chen, and G. Jiang, “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Sci. 117, 472–477 (2016).

CrystEngComm (1)

G. D. Zhang, H. P. Ruan, X. Zhang, S. P. Wang, and X. T. Tao, “Vertical Bridgman growth and optical properties of CdSiP2 crystals,” CrystEngComm 15(21), 4255–4260 (2013).

J. Appl. Phys. (3)

E. M. Golden, N. C. Giles, E. Maniego, F. K. Hopkins, K. T. Zawilski, P. G. Schunemann, and L. E. Halliburton, “Identification of native defects (vacancies and antisites) in CdSiP2 crystals,” J. Appl. Phys. 118(18), 185702 (2015).

S. D. Setzler, P. G. Schunemann, T. M. Pollak, M. C. Ohmer, J. T. Goldstein, F. K. Hopkins, K. T. Stevens, L. E. Halliburton, and N. C. Giles, “Characterization of defect-related optical absorption in ZnGeP2,” J. Appl. Phys. 86(12), 6677–6681 (1999).

N. C. Giles, L. Bai, M. M. Chirila, N. Y. Garces, K. T. Stevens, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Infrared absorption bands associated with native defects in ZnGeP2,” J. Appl. Phys. 93(11), 8975–8981 (2003).

J. Cryst. Growth (3)

N. C. Giles, L. E. Halliburton, S. Yang, X. Yang, A. T. Brant, N. C. Fernelius, P. G. Schunemann, and K. T. Zawilski, “Optical and EPR study of point defects in CdSiP2 crystals,” J. Cryst. Growth 312(8), 1133–1137 (2010).

K. T. Zawilski, P. G. Schunemann, T. M. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth 312(8), 1127–1132 (2010).

L. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, H. Yang, G. Liu, and X. Wang, “Growth of CdSiP2 single crystals by double-walled quartz ampoule technique,” J. Cryst. Growth 364, 62–66 (2013).

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Proc. SPIE (1)

F. K. Hopkins, S. Guha, B. Claflin, P. G. Schunemann, K. T. Zawilski, N. C. Giles, and L. E. Halliburton, “Potential of CdSiP2 for Enabling Mid-Infrared Laser Sources,” Proc. SPIE 9616, 96160W (2015).

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).

Solid State Commun. (1)

Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, “Study of the vibrational, dielectric and infrared properties of CdSiP2 via first principles,” Solid State Commun. 246, 88–93 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical absorption spectra taken at room temperature from a CdSiP2 crystal. (a) Spectra taken before (lower black curve) and during (upper red curve) exposure to 633 nm laser light. (b) Difference spectrum showing the photoinduced absorption. (Right side) Difference curves for eight CdSiP2 crystals showing the photoinduced absorption produced during illumination with 633 nm laser light. Each curve represents “light-on” minus “light-off”. In descending order, these are samples 30, 44, 32, 46, 45, 40, 24, and 41.
Fig. 2
Fig. 2 EPR spectra from a CdSiP2 crystal taken at room temperature with the magnetic field along the c axis. (a) Spectrum taken before exposure to 633 nm light. (b) Spectrum taken during exposure to 633 nm laser light. (c) Difference spectrum showing the photoinduced signals from the silicon-vacancy acceptor ( V Si ) and the silicon-on-cadmium antisite donor ( S i Cd + ). Stick diagrams identify the 31P hyperfine lines associated with each defect.
Fig. 3
Fig. 3 Correlation of the intensity of the photoinduced optical absorption at 800 nm with the concentration of the photoinduced singly ionized silicon vacancies ( V Si ) in the eight CdSiP2 crystals included in this study. The EPR spectra and the optical absorption spectra were taken at room temperature. The solid line is a guide to the eye.
Fig. 4
Fig. 4 The decay of the 800 nm optical absorption (red line) and the EPR spectrum from the V Si silicon vacancies (black line) in a CdSiP2 crystal. The two spectral features were separately monitored after removing the 633 nm laser light. Absorption data are from sample 30 and EPR data are from sample 46.

Metrics