Abstract

In this work, the structural and optical properties of bulk heterojunctions (BHJ) composed of MEH-PPV and carbon-based non-fullerene nanodiamond (ND) have been investigated. The steady-state absorption, temperature-dependent fluorescence and Raman spectroscopy demonstrate the conjugated length is increased and more ordered crystalline domains are formed in MEH-PPV films with the increment of ND content. The time-resolved fluorescence spectroscopy and 2D microscopy indicate that the BHJs with higher concentrations of ND may enhance the donor/acceptor interfacial contact which favors the dissociation of excitons into free charge carriers. Solar cells based on MEH-PPV:ND BHJs were fabricated to explore the interplay between structural, photophysical properties, and ultimately, device performances. The results show that optimization of blend composition and structures with ND may improve the efficiency of the thin film photovoltaic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers

John R. Tumbleston, Doo-Hyun Ko, Edward T. Samulski, and Rene Lopez
Opt. Express 17(9) 7670-7681 (2009)

Subnanosecond charge photogeneration and recombination in polyfluorene copolymer-fullerene solar cell: Effects of electric field

Wei Zhang, Ye Huang, Ya-Dong Xing, Yan Jing, Long Ye, Li-Min Fu, Xi-Cheng Ai, Jian-Hui Hou, and Jian-Ping Zhang
Opt. Express 21(S2) A241-A249 (2013)

Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3:Yb/Er) nanophosphors in solar cells

Xiao Jin, Haiyang Li, Dongyu Li, Qin Zhang, Feng Li, Weifu Sun, Zihan Chen, and Qinghua Li
Opt. Express 24(18) A1276-A1287 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
    [Crossref] [PubMed]
  2. M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
    [Crossref] [PubMed]
  3. W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
    [Crossref]
  4. F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
    [Crossref]
  5. J. E. Anthony, “Small-molecule, non fullerene acceptors for polymer bulk heterojunction organic photovoltaics,” Chem. Mater. 23(3), 583–590 (2011).
    [Crossref]
  6. Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 1(5), 463–470 (2014).
    [Crossref]
  7. S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
    [Crossref] [PubMed]
  8. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
    [Crossref]
  9. M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
    [Crossref] [PubMed]
  10. Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
    [Crossref]
  11. X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
    [Crossref]
  12. W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
    [Crossref]
  13. H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
    [Crossref]
  14. Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
    [Crossref]
  15. B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
    [Crossref] [PubMed]
  16. P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
    [Crossref]
  17. F. C. Spano and H. Yamagata, “Vibronic Coupling in J-Aggregates and Beyond: a Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
    [Crossref] [PubMed]
  18. S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
    [Crossref]
  19. S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
    [Crossref]
  20. J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
    [Crossref] [PubMed]
  21. N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
    [Crossref]
  22. X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
    [Crossref]
  23. X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
    [Crossref]

2016 (2)

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

2015 (2)

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

2014 (3)

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 1(5), 463–470 (2014).
[Crossref]

2013 (1)

X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
[Crossref]

2012 (3)

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

2011 (7)

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
[Crossref] [PubMed]

J. E. Anthony, “Small-molecule, non fullerene acceptors for polymer bulk heterojunction organic photovoltaics,” Chem. Mater. 23(3), 583–590 (2011).
[Crossref]

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

F. C. Spano and H. Yamagata, “Vibronic Coupling in J-Aggregates and Beyond: a Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
[Crossref]

2009 (1)

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

2008 (1)

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

2003 (3)

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Amato, M.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Anastasiadis, S. H.

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Anni, M.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Anthony, J. E.

J. E. Anthony, “Small-molecule, non fullerene acceptors for polymer bulk heterojunction organic photovoltaics,” Chem. Mater. 23(3), 583–590 (2011).
[Crossref]

Banerji, N.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

Bernardi, M.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Brida, D.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Brown, P. J.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Bulovic, V.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Cerullo, G.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Chan, N. Y.

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

Chandrasekhar, H. R.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Chandrasekhar, M.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Chen, Y.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Chen, Z.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Cheng, Z.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Cowan, S.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

Cui, C.

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

da Silva, P. F.

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

Dai, B. T.

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

Dang, M. T.

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
[Crossref] [PubMed]

De Sio, A.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Desai, C.

X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
[Crossref]

Du, X.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Dunstan, D. E.

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

Falke, S. M.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Fang, T. H.

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

Feldmann, J.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Feng, L.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

Ferreira, B.

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

Freitas, P. S.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Friend, R. H.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Ghosh, C.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Gradecak, S.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Grossman, J. C.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Guentner, R.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Guha, S.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Hao, X. T.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
[Crossref]

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

Heeger, A. J.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

Hirsch, L.

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
[Crossref] [PubMed]

Hsiao, Y. J.

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

Huang, Y.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Ji, L. W.

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

Ji, T.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Jin, G.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Jin, H. D.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

Joshi, M. P.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Kim, J. S.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Kohler, A.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Koudoumas, E.

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Kukreja, L. M.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Kymakis, E.

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Lau, X. C.

X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
[Crossref]

Lee, Y. C.

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

Lemmer, U.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Li, Y.

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

Lienau, C.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Lin, Y.

Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 1(5), 463–470 (2014).
[Crossref]

Liu, F.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Liu, Q.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Liu, Z.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Lunt, R. R.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Lupton, J. M.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Ma, Y.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Maçanita, A.

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

Maiuri, M.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Martin, C. M.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

McKimmie, L. J.

X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
[Crossref]

Mitra, S.

X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
[Crossref]

Mohan, S. R.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Molinari, E.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Mukharjee, C.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Müller, J. G.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Pina, J.

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

Ramsdale, C. M.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Raschke, G.

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Ren, S.

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Rice, J. D.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Rozzi, C. A.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Rubio, A.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Scherf, U.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Seixas de Melo, J. S.

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

Shalu, C.

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Sirringhaus, H.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Smith, T. A.

X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
[Crossref]

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

Sommer, E.

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Spano, F. C.

F. C. Spano and H. Yamagata, “Vibronic Coupling in J-Aggregates and Beyond: a Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

Stratakis, E.

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Stylianakis, M. M.

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Sun, W.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Sun, Y.

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

Thomas, D. S.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Vauthey, E.

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

Wang, H.

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

Wantz, G.

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
[Crossref] [PubMed]

Wilson, J. S.

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Wu, B.

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

Xu, W. L.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

Yamagata, H.

F. C. Spano and H. Yamagata, “Vibronic Coupling in J-Aggregates and Beyond: a Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

Yang, B.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Yang, X. Y.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

Yau, Y. T.

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

Yin, S.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Yuan, W. H.

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

Zeng, Q.

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

Zhan, X.

Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 1(5), 463–470 (2014).
[Crossref]

Zhang, X.

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Zheng, F.

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

Zhu, F.

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

Zhu, M. Q.

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

Y. Sun, C. Cui, H. Wang, and Y. Li, “Efficiency enhancement of polymer solar cells basedon poly(3-hexylthiophene)/Indene-C70 bis-adduct via methylthiophene additive,” Adv. Energy Mater. 1(6), 1058–1061 (2011).
[Crossref]

Adv. Mater. (2)

M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
[Crossref] [PubMed]

Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaicdevices based on a novel acceptor material: graphene,” Adv. Mater. 20(20), 3924–3930 (2008).
[Crossref]

Chem. Mater. (1)

J. E. Anthony, “Small-molecule, non fullerene acceptors for polymer bulk heterojunction organic photovoltaics,” Chem. Mater. 23(3), 583–590 (2011).
[Crossref]

Diamond Related Materials (1)

W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X. T. Hao, “Charge transfer dyanamics in poly(3-hexylthiophene):nanodiamond blend films,” Diamond Related Materials 64, 8–12 (2016).
[Crossref]

Electrochem. Commun. (1)

Y. J. Hsiao, T. H. Fang, L. W. Ji, Y. C. Lee, and B. T. Dai, “Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells,” Electrochem. Commun. 18, 4–7 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, and B. Yang, “High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%,” J. Mater. Chem. A Mater. Energy Sustain. 4(3), 1105–1111 (2016).
[Crossref]

J. Phys. Chem. B (2)

B. Ferreira, P. F. da Silva, J. S. Seixas de Melo, J. Pina, and A. Maçanita, “Excited-state dynamics and self-organization of poly(3-hexylthiophene) (P3HT) in solution and thin films,” J. Phys. Chem. B 116(8), 2347–2355 (2012).
[Crossref] [PubMed]

F. C. Spano and H. Yamagata, “Vibronic Coupling in J-Aggregates and Beyond: a Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum,” J. Phys. Chem. B 115(18), 5133–5143 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (3)

W. L. Xu, B. Wu, F. Zheng, X. Y. Yang, H. D. Jin, F. Zhu, and X. T. Hao, “Fӧrster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk Heterojunction,” J. Phys. Chem. C 119(38), 21913–21920 (2015).
[Crossref]

N. Banerji, S. Cowan, E. Vauthey, and A. J. Heeger, “Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum,” J. Phys. Chem. C 115(19), 9726–9739 (2011).
[Crossref]

X. T. Hao, N. Y. Chan, D. E. Dunstan, and T. A. Smith, “Conformational Changes and Photophysical Behavior in Poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] Thin Films Cast under an Electric Field,” J. Phys. Chem. C 113(27), 11657–11661 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

X. T. Hao, L. J. McKimmie, and T. A. Smith, “Spatial Fluorescence Inhomogeneities in Light-Emitting Conjugated Polymer Films,” J. Phys. Chem. Lett. 2(13), 1520–1525 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. D. Jin, F. Zheng, W. L. Xu, W. H. Yuan, M. Q. Zhu, and X. T. Hao, “The structure and optical properties ofregio-regular poly(3-hexylthiophene) andcarboxylic multi-walled carbon nanotubescomposite films,” J. Phys. D Appl. Phys. 47(50), 505502 (2014).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

S. R. Mohan, M. P. Joshi, C. Shalu, C. Ghosh, C. Mukharjee, and L. M. Kukreja, “Charge transport properties of MDMO PPV thin films castin different solvents,” J. Polym. Sci., B, Polym. Phys. 53(20), 1431–1439 (2015).
[Crossref]

Mater. Horiz. (1)

Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 1(5), 463–470 (2014).
[Crossref]

Nano Lett. (1)

S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
[Crossref] [PubMed]

Phys. Rev. B (2)

S. Guha, J. D. Rice, Y. T. Yau, C. M. Martin, M. Chandrasekhar, H. R. Chandrasekhar, R. Guentner, P. S. Freitas, and U. Scherf, “Temperature-dependent photoluminescence of organic semiconductors with varying backbone conformation,” Phys. Rev. B 67(12), 125204 (2003).
[Crossref]

P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene),” Phys. Rev. B 67(6), 064203 (2003).
[Crossref]

Phys. Rev. Lett. (1)

J. G. Müller, U. Lemmer, G. Raschke, M. Anni, U. Scherf, J. M. Lupton, and J. Feldmann, “Linewidth-limited energy transfer in single conjugated polymer molecules,” Phys. Rev. Lett. 91(26), 267403 (2003).
[Crossref] [PubMed]

Science (1)

S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, “Coherent ultrafast charge transfer in an organic photovoltaic blend,” Science 344(6187), 1001–1005 (2014).
[Crossref] [PubMed]

Sol. Energy (1)

X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 AFM images of dried films of pristine MEH-PPV (a) and its blends with ND at a concentration of 10 (b), 20 (c), and 30 (d) wt.%, respectively.
Fig. 2
Fig. 2 (a) Normalized absorption of pristine MEH:PPV and MEH-PPV:ND films. (b)Plot of (αhν)2 as a function of photon energy, Eg, for the MEH-PPV:ND samples.
Fig. 3
Fig. 3 Steady-state PL spectra of pristine MEH-PPV and composite MEH-PPV:ND thin films at RT. Inset: Peak positions of (0-0) peak around 593 nm for the samples.
Fig. 4
Fig. 4 (a) Raman spectra of pristine MEH-PPV and MEH-PPV: ND blend films. The inset is the molecular structure of MEH-PPV. (b) Detailed structure of the strongest Raman band at c.a. 1585 cm−1 of the films.
Fig. 5
Fig. 5 PL spectra of films of pristine MEH-PPV (a) and 30 wt.% ND:MEH-PPV blend (b) measured at different temperatures. The insets in (a) and (b) show the energy positions of the two main peaks ((0-0) and (0-1) transitions) as a function of temperature. (c) Intensity ratio between (0-1) and (0-0) peaks as a function of temperature.
Fig. 6
Fig. 6 (a) PL quenching effect in composite of MEH-PPV and ND. (b) Schematic sketch of experimental setup for the time-resolved fluorescence up-conversion measurement. (c) Fluorescence decay profiles of pure MEH-PPV and MEH-PPV:ND blend films.
Fig. 7
Fig. 7 Time-resolved fluorescence images of thin films composed of MEH-PPV and ND at concentrations of 0 (a), 10 (b), 20 (c) and 30 (d)wt.%. The color bar corresponds to the range of 370-410 ps for all the four images.
Fig. 8
Fig. 8 (a) Schematic diagram of OSC. (b)Energy level diagram of the device. (c) J-V curves of the solar cells with active layers composed of pristine MEH-PPV and blends of MEH-PPV:ND with concentrations of ND at 10, 20 and 30 wt.% respectively.

Tables (3)

Tables Icon

Table 1 Average values of shift rate of peak positions

Tables Icon

Table 2 Fluorescence decay parameters of pristine MEH-PPV and MEH-PPV/ND thin films.

Tables Icon

Table 3 Device parameters of MEH-PPV/ND BHJ solar cells.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(αhν) 2 =C( E g )

Metrics