Abstract

ZnGa2O4:Cr3+ is an outstanding near-infrared (NIR) long-lasting phosphorescence (LLP) material with afterglow duration of more than 5h, which is potentially applicable in bioimaging. The well-studied antisite GaZn and ZnGa defects are reported to serve as shallow traps responsible for the persistent luminescence. The less-studied but commonly available oxygen vacancy in this material may be associated with deep traps, which is barely investigated but of significance to influence the luminescence and LLP behavior. Moreover, persistent luminescence mechanisms associated with shallow and deep traps require identification of the carriers. This research attempts to reveal the detail of deep traps and the mechanism involved, with the assistance of photoluminescence (PL), thermoluminescence (TL), and alternating current (AC) impedance spectroscopy as well as density functional theory (DFT) calculations. Results show that the VO•• defects in the neighbor of Cr3+ could probably change the contents of antisite defects and result in variation of R/N2 ratio in PL and afterglow spectra. VO•• defects may also serve as the deep traps, which might agglomerate with Cr3+ and antisite defects to form cluster that is responsible for visible-light-stimulated LLP but with a negative effect. The research would be beneficial in understanding the common LLP phenomenon.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness

Aurélie Bessière, Sylvaine Jacquart, Kaustubh Priolkar, Aurélie Lecointre, Bruno Viana, and Didier Gourier
Opt. Express 19(11) 10131-10137 (2011)

Phosphorescence performance of La3GaGe5O16:Tb3+ by enhancing the bridging oxygen vacancies

Shaoan Zhang, Yihua Hu, and He Duan
Opt. Mater. Express 6(6) 1998-2013 (2016)

Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics

Yixi Zhuang, Jumpei Ueda, and Setsuhisa Tanabe
Opt. Mater. Express 2(10) 1378-1383 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Hölsä, “Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence,” J. Electrochem. Soc. 18, 42–45 (2009).
  2. Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
    [Crossref] [PubMed]
  3. H. F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2(4), 371–381 (2012).
    [Crossref]
  4. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
    [Crossref]
  5. P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+;Dy3+,” Phys. Status Solidi242(1), R7–R9 (2005) (b).
    [Crossref]
  6. X. Q. Xu, J. Ren, G. R. Chen, D. S. Kong, C. J. Gu, C. M. Chen, and L. R. Kong, “Bright green emission from the Mn2+-doped zinc gallogermanate phosphors,” Opt. Mater. Express 3(10), 1727–1732 (2013).
    [Crossref]
  7. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express 2(4), 382–390 (2012).
    [Crossref]
  8. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
    [Crossref]
  9. T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
    [Crossref] [PubMed]
  10. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  11. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  12. B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
    [Crossref]
  13. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  14. J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
    [Crossref]
  15. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
    [Crossref]
  16. J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1983).
    [Crossref]
  17. W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
    [Crossref]
  18. A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
    [Crossref]
  19. D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
    [Crossref]
  20. L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
    [Crossref] [PubMed]
  21. N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
    [Crossref] [PubMed]
  22. N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
    [Crossref] [PubMed]
  23. N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
    [Crossref] [PubMed]
  24. M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
    [Crossref]
  25. J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
    [Crossref]
  26. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
    [Crossref] [PubMed]
  27. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
    [Crossref]
  28. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  29. W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
    [Crossref]
  30. W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
    [Crossref]
  31. Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
    [Crossref]
  32. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
    [Crossref] [PubMed]
  33. D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+,” A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
    [Crossref]
  34. A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
    [Crossref] [PubMed]
  35. K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
    [Crossref]
  36. X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
    [Crossref]

2017 (1)

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

2016 (5)

L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
[Crossref] [PubMed]

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

2015 (2)

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

2014 (5)

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

2013 (3)

X. Q. Xu, J. Ren, G. R. Chen, D. S. Kong, C. J. Gu, C. M. Chen, and L. R. Kong, “Bright green emission from the Mn2+-doped zinc gallogermanate phosphors,” Opt. Mater. Express 3(10), 1727–1732 (2013).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

2012 (3)

2011 (3)

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

2010 (1)

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

2009 (1)

J. Hölsä, “Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence,” J. Electrochem. Soc. 18, 42–45 (2009).

2004 (1)

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

2003 (3)

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+,” A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

1993 (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

1990 (2)

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

1983 (1)

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1983).
[Crossref]

1981 (1)

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]

Aitasalo, T.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Alahrache, S.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Allix, M.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Basavaraju, N.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bessière, A.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Binet, L.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bos, A. J. J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Boulon, G.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

Brito, H. F.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Chen, C. M.

Chen, G. R.

Chen, Z. Y.

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Chenu, S.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Choi, J. C.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Chon, C. M.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

Chuang, Y.-J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Daul, C.

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

De Vos, A.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

Deren, P.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Derkosch, J.

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1983).
[Crossref]

Dorenbos, P.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+;Dy3+,” Phys. Status Solidi242(1), R7–R9 (2005) (b).
[Crossref]

Emura, S.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Esaki, Y.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Fayon, F.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Fujii, K.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Gecevicius, M.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Gourier, D.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
[Crossref] [PubMed]

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Gu, C. J.

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Han, M.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Hemelsoet, K.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

Hester, J. R.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Hölsä, J.

L. C. V. Rodrigues, H. F. Brito, J. Hölsä, and M. Lastusaari, “Persistent luminescence behavior of materials doped with Eu2+ and Tb3+,” Opt. Mater. Express 2(4), 382–390 (2012).
[Crossref]

H. F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2(4), 371–381 (2012).
[Crossref]

J. Hölsä, “Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence,” J. Electrochem. Soc. 18, 42–45 (2009).

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Hoshikawa, A.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Hwang, Y. H.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Ishigaki, T.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Jacquart, S.

Jia, D.

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+,” A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

Joos, J. J.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Jung, M.-C.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Jungner, H.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Kang, H. I.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kim, G. C.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kim, J. I.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kim, J. S.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kim, T. W.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kim, W. N.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Kong, D. S.

Kong, L. R.

Kouadri-Boudjelthia, E. A.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Krupa, J.-C.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Kuang, X. J.

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Laamanen, T.

Lastusaari, M.

Lecointre, A.

Legendziewicz, J.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Lejaeghere, K.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Linares, C.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

Linarès, C.

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

Liu, F.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Liu, S. B.

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Lu, F. Q.

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Maldiney, T.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Malkamäki, M.

Massiot, D.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Mho, S. I.

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Michel-Calendini, F. M.

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

Mikenda, W.

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1983).
[Crossref]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]

Moon, H. S.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

Nie, W.

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

Niittykoski, J.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Omoto, K.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Pan, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Park, H. L.

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Poelman, D.

Porcher, F.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Poumeyrol, T.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Preisinger, A.

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]

Priolkar, K.

Priolkar, K. R.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Qiu, J.

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Ren, J.

Richard, C.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Rodrigues, L. C. V.

Scherman, D.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Sharma, S. K.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
[Crossref] [PubMed]

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Smet, P. F.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

Sraiki, G.

Strek, W.

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Tanabe, S.

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

Teston, E.

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Ueda, J.

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

Van den Eeckhout, K.

Vanpoucke, D. E. P.

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

Véron, E.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Viana, B.

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Wang, T. M.

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Wattier, N.

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Xie, J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Xu, J. G.

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Xu, X. Q.

Yan, W.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Yang, X. Y.

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

Yashima, M.

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Yen, W. M.

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+,” A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

Zhang, J. Y.

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhang, W. W.

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhen, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zheng, S. K.

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhuang, Y. X.

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

ACS Nano (1)

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, and D. Scherman, “Effect of Core Diameter, Surface Coating, and PEG Chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice,” ACS Nano 5(2), 854–862 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, M.-C. Jung, and M. Han, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes,” Appl. Phys. Lett. 82(13), 2029–2031 (2003).
[Crossref]

Chem. Mater. (3)

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, E. A. Kouadri-Boudjelthia, S. Alahrache, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

K. Fujii, Y. Esaki, K. Omoto, M. Yashima, A. Hoshikawa, T. Ishigaki, and J. R. Hester, “New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4,” Chem. Mater. 26(8), 2488–2491 (2014).
[Crossref]

Chem. Soc. Rev. (1)

Y. Li, M. Gecevicius, and J. Qiu, “Long persistent phosphors--from fundamentals to applications,” Chem. Soc. Rev. 45(8), 2090–2136 (2016).
[Crossref] [PubMed]

Inorg. Chem. (1)

A. De Vos, K. Lejaeghere, D. E. P. Vanpoucke, J. J. Joos, P. F. Smet, and K. Hemelsoet, “First-principles study of antisite defect configurations in ZnGa2O4:Cr persistent phosphors,” Inorg. Chem. 55(5), 2402–2412 (2016).
[Crossref] [PubMed]

J. Electrochem. Soc. (2)

D. Jia and W. M. Yen, “Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2O4:Ce3+,” A Persistent Phosphor,” J. Electrochem. Soc. 150(3), H61–H65 (2003).
[Crossref]

J. Hölsä, “Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence,” J. Electrochem. Soc. 18, 42–45 (2009).

J. Lumin. (6)

B. Viana, S. K. Sharma, D. Gourier, T. Maldiney, E. Teston, D. Scherman, and C. Richard, “Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence,” J. Lumin. 170(Part 3), 879–887 (2016).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linarès, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang, and S. K. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (II) origins of N-lines,” J. Lumin. 26(1-2), 67–83 (1981).
[Crossref]

J. Derkosch and W. Mikenda, “N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra,” J. Lumin. 28(4), 431–441 (1983).
[Crossref]

W. Nie, F. M. Michel-Calendini, C. Linares, G. Boulon, and C. Daul, “New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4,” J. Lumin. 46(3), 177–190 (1990).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. X. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, “Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(28), 5502–5509 (2014).
[Crossref]

J. Phys. Chem. C (1)

X. Y. Yang, S. B. Liu, F. Q. Lu, J. G. Xu, and X. J. Kuang, “Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors,” J. Phys. Chem. C 120(12), 6416–6426 (2016).
[Crossref]

J. Phys. Chem. Solids (1)

D. Gourier, A. Bessière, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75(7), 826–837 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

L. Binet, S. K. Sharma, and D. Gourier, “Interaction of Cr3+ with valence and conduction bands in the long persistent phosphor ZnGa2O4:Cr3+, studied by ENDOR spectroscopy,” J. Phys. Condens. Matter 28(38), 385501 (2016).
[Crossref] [PubMed]

J. Solid State Chem. (1)

T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003).
[Crossref]

Nat. Mater. (2)

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (3)

N. Basavaraju, K. R. Priolkar, D. Gourier, A. Bessière, and B. Viana, “Order and disorder around Cr3+ in chromium doped persistent luminescent AB2O4 spinels,” Phys. Chem. Chem. Phys. 17(16), 10993–10999 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, D. Gourier, S. K. Sharma, A. Bessière, and B. Viana, “The importance of inversion disorder in the visible light induced persistent luminescence in Cr3+ doped AB2O4 (A = Zn or Mg and B = Ga or Al),” Phys. Chem. Chem. Phys. 17(3), 1790–1799 (2015).
[Crossref] [PubMed]

N. Basavaraju, K. R. Priolkar, A. Bessière, S. K. Sharma, D. Gourier, L. Binet, B. Viana, and S. Emura, “Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution,” Phys. Chem. Chem. Phys. 19(2), 1369–1377 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), 1758–1775 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Solid State Commun. (1)

J. S. Kim, H. L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors,” Solid State Commun. 129(3), 163–167 (2004).
[Crossref]

Other (1)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+;Dy3+,” Phys. Status Solidi242(1), R7–R9 (2005) (b).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a-c) PL spectra of the ZGO:Cr annealed at different atmosphere and excited at different wavelength light; (d) the enlarged spectra of (a-c).
Fig. 2
Fig. 2 (a) TL spectra of the ZGO:Cr recorded under different modes; normalized TL spectra of the ZGO:Cr annealed under (b) 5%H2/95%N2 and (c) O2, excited by 290 nm ultraviolet and 550 nm visible light, respectively; (d) comparison of the TL spectra of ZGO:Cr samples annealed under reduction and oxidation atmosphere, excited by 550 nm (inset is the normalized spectra).
Fig. 3
Fig. 3 (a) TL spectra of as-synthesized ZGO:Cr illuminated by monochromatic light at 290, 400 and 550 nm for 5minutes, respectively, and the samples were de-trapped at 350 °C before the illumination; (b) the corresponding afterglow spectra.
Fig. 4
Fig. 4 Total DOS (TDOS), partial DOS (PDOS) for O and PDOS for Zn in (a) ZGO, (b) ZGO with an oxygen vacancy and (c) ZGO with a zinc vacancy.
Fig. 5
Fig. 5 (a) Four possible models of the ZGO with one oxygen vacancy and one Ga3+ substituted by Cr3+ ion in the 2 × 1 × 1 supercell. The green, blue and red balls denote the Ga, Cr and O ions, respectively. The Zn ions are not displayed herein and the oxygen vacancy has been marked by yellow circle; (b) the formation energy E of the series models with different distanced Cr3+-VO••. The distance is 2.0256 Å, 4.6956 Å, 8.8051 Å and 12.8049 Å for M1-M4 models, respectively.
Fig. 6
Fig. 6 (a) Temperature dependence of grain conductivity of ZGO:Cr under N2 atmosphere; (b) pO2-dependency of grain conductivity of ZGO:Cr at 700 °C.

Tables (1)

Tables Icon

Table 1 Three kinds of modes for TL measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

O O 1 2 O 2 + V O .. +2 e

Metrics