Abstract

Sn-containing silicate glasses with zero photoelastic constant (PEC) can potentially substitute zero-PEC Pb-containing glasses as optical fiber current sensor components based on the Faraday effect. These compounds allow monitoring of the electric power by measuring the electric current in high-voltage conductors operated with a 1550-nm light. The toxicity of Pb in these glasses still remains an important issue. However, replacing Pb in the sensors while minimizing the PEC of the resulting device would represent a significant breakthrough. We report a 43.5SnO–56.5SiO2 glass in molar% with zero PEC of + 0.01 × 10−12 Pa−1 observed with a wavelength of 632.8 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zero photoelastic zinc tin phosphate glass without lead oxide

Naoki Yamamoto, Akira Saitoh, and Hiromichi Takebe
Opt. Lett. 37(20) 4203-4205 (2012)

Low photoelastic and optical properties in RO–SnO–P2O5 (R = Zn, Ba, Sr) glasses

Masayuki Itadani, Akira Saitoh, Yuki Masaoka, and Hiromichi Takebe
Opt. Lett. 41(1) 45-48 (2016)

Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy

T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse, and M. Eberstein
Opt. Mater. Express 3(6) 755-764 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Itadani, A. Saitoh, Y. Masaoka, and H. Takebe, “Low photoelastic and optical properties in RO-SnO-P2O5 (R = Zn, Ba, Sr) glasses,” Opt. Lett. 41(1), 45–48 (2016).
    [Crossref] [PubMed]
  2. K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sensors 4(1), 12–20 (2014).
    [Crossref]
  3. K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).
  4. A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
    [Crossref]
  5. A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
    [Crossref]
  6. M. M. A. Karim, Doctoral Thesis, “A study of tin oxides in silicate based glasses,” University of Warwick, 1995.
  7. J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
    [Crossref]
  8. M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
    [Crossref]
  9. M. Tashiro, “The effects of the polarisation of constituent ions on the photoelastic birefringence of the glass,” J. Soc. Glass Technol. 40, 353T–362T (1956).
  10. W. A. Weyl and E. C. Marboe, “The constitution of Glass,” (Wiley-Interscience, New York, 1964), Vol. 2.
  11. V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
    [Crossref]
  12. H. Takasaki, N. Umeda, and M. Tsukiji, “Stabilized transverse Zeemanlaser as a new light source for optical measurement,” Appl. Opt. 19(3), 435–441 (1980).
    [Crossref] [PubMed]
  13. D. Ehrt, “Effect of OH-content on thermal and chemical properties of SnO–P2O5 glasses,” J. Non-Cryst. Solids 354(2-9), 546–552 (2008).
    [Crossref]
  14. P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622–644 (1984).

2017 (1)

A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
[Crossref]

2016 (1)

2015 (1)

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

2014 (1)

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sensors 4(1), 12–20 (2014).
[Crossref]

2011 (1)

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

2008 (1)

D. Ehrt, “Effect of OH-content on thermal and chemical properties of SnO–P2O5 glasses,” J. Non-Cryst. Solids 354(2-9), 546–552 (2008).
[Crossref]

2007 (1)

M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
[Crossref]

2000 (1)

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

1998 (1)

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

1984 (1)

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622–644 (1984).

1980 (1)

1956 (1)

M. Tashiro, “The effects of the polarisation of constituent ions on the photoelastic birefringence of the glass,” J. Soc. Glass Technol. 40, 353T–362T (1956).

Albrecht, L.

M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
[Crossref]

Anan, S.

A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
[Crossref]

Bent, J. F.

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

Chen, Y.

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Dunlap, R. A.

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

Ehrt, D.

D. Ehrt, “Effect of OH-content on thermal and chemical properties of SnO–P2O5 glasses,” J. Non-Cryst. Solids 354(2-9), 546–552 (2008).
[Crossref]

Guignard, M.

M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
[Crossref]

Hannon, A. C.

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

Holland, D.

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

Itadani, M.

Karim, M. M. A.

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

Kurosawa, K.

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sensors 4(1), 12–20 (2014).
[Crossref]

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

Martin, V.

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

Masaoka, Y.

McMillan, P.

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622–644 (1984).

Nakata, K.

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Saitoh, A.

A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
[Crossref]

M. Itadani, A. Saitoh, Y. Masaoka, and H. Takebe, “Low photoelastic and optical properties in RO-SnO-P2O5 (R = Zn, Ba, Sr) glasses,” Opt. Lett. 41(1), 45–48 (2016).
[Crossref] [PubMed]

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Sowa, T.

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

Takasaki, H.

Takebe, H.

A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
[Crossref]

M. Itadani, A. Saitoh, Y. Masaoka, and H. Takebe, “Low photoelastic and optical properties in RO-SnO-P2O5 (R = Zn, Ba, Sr) glasses,” Opt. Lett. 41(1), 45–48 (2016).
[Crossref] [PubMed]

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Tashiro, M.

M. Tashiro, “The effects of the polarisation of constituent ions on the photoelastic birefringence of the glass,” J. Soc. Glass Technol. 40, 353T–362T (1956).

Tricot, G.

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Tsukiji, M.

Umeda, N.

Werner-Zwanziger, U.

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

Yamada, Y.

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

Yamamoto, N.

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Yamashita, K.

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

Zwanziger, J. W.

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

Zwanziger, W.

M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
[Crossref]

Am. Mineral. (1)

P. McMillan, “Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622–644 (1984).

APL Mater. (1)

A. Saitoh, K. Nakata, G. Tricot, Y. Chen, N. Yamamoto, and H. Takebe, “Zero photoelastic and water durable ZnO–SnO–P2O5–B2O3 glasses,” APL Mater. 3(4), 046102 (2015).
[Crossref]

Appl. Opt. (1)

Chem. Mater. (1)

M. Guignard, L. Albrecht, and W. Zwanziger, “Zero-stress optic glass without lead,” Chem. Mater. 19(2), 286–290 (2007).
[Crossref]

IEICE Trans. Electron. (1)

K. Kurosawa, K. Yamashita, T. Sowa, and Y. Yamada, “Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme,” IEICE Trans. Electron. E83-C, 326–330 (2000).

Int. J. Appl. Glass Sci. (1)

V. Martin, U. Werner-Zwanziger, J. W. Zwanziger, and R. A. Dunlap, “Correlation of structure and photoelastic response in tin phosphate glass,” Int. J. Appl. Glass Sci. 2(4), 282–289 (2011).
[Crossref]

J. Mater. Sci. (1)

A. Saitoh, S. Anan, and H. Takebe, “Surface crystallization behavior during thermal processing of low-photoelastic ZnO–SnO–P2O5 glasses,” J. Mater. Sci. 52(4), 2192–2199 (2017).
[Crossref]

J. Non-Cryst. Solids (2)

J. F. Bent, A. C. Hannon, D. Holland, and M. M. A. Karim, “The structure of tin silicate glasses,” J. Non-Cryst. Solids 232–234, 300–308 (1998).
[Crossref]

D. Ehrt, “Effect of OH-content on thermal and chemical properties of SnO–P2O5 glasses,” J. Non-Cryst. Solids 354(2-9), 546–552 (2008).
[Crossref]

J. Soc. Glass Technol. (1)

M. Tashiro, “The effects of the polarisation of constituent ions on the photoelastic birefringence of the glass,” J. Soc. Glass Technol. 40, 353T–362T (1956).

Opt. Lett. (1)

Photonic Sensors (1)

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sensors 4(1), 12–20 (2014).
[Crossref]

Other (2)

M. M. A. Karim, Doctoral Thesis, “A study of tin oxides in silicate based glasses,” University of Warwick, 1995.

W. A. Weyl and E. C. Marboe, “The constitution of Glass,” (Wiley-Interscience, New York, 1964), Vol. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical transmittance spectra of binary xSnO−(100-x)SiO2 in molar% glasses showing various PEC values including a nearly zero sample and a 45PbO–55SiO2 glass sample with zero PEC for wavelengths of 300–1600 nm. Insets are representative photographs of the SnO−SiO2 glass samples.
Fig. 2
Fig. 2 Photoelastic constant as a function of the composition for binary xSnO−(100-x)SiO2 glasses. Open symbols indicates samples tested at 632.8 nm, while solid symbols represents measurements at 565 nm taken from ref. 8. The dashed line represents zero PEC.
Fig. 3
Fig. 3 Raman (left) and Fourier transformed infrared (right) spectra of xSnO−(100-x)SiO2 glasses with each decomposed peak.
Fig. 4
Fig. 4 Schematic models of (a) isotropic and (b) anisotropic refractive index under uniaxial loading in SnO–SiO2 glasses with negative PEC values. Spherical and ellipsoidal hatchings represent the electronic clouds for Sn2+ and O2- ions in (b), respectively.

Metrics