Abstract

The plasmonic properties of titanium nitride (TiN) films depend on the type of substrate when using typical deposition methods such as sputtering. Here we show atomic layer deposition (ALD) of TiN films with very weak dependence of plasmonic properties on the substrate, which also suggests the prediction and evaluation of plasmonic performance of TiN nanostructures on arbitrary substrates under a given deposition condition. Our results also observe that substrates with more nitrogen-terminated (N-terminated) surfaces will have significant impact on the deposition rate as well as the film plasmonic properties. We further illustrate that the plasmonic properties of ALD TiN films can be tailored by simply adjusting the deposition and/or post-deposition annealing temperatures. Such characteristics and the capability of conformal coating make ALD TiN films on templates ideal for applications that require the fabrication of complex 3D plasmonic nanostructures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High aspect ratio titanium nitride trench structures as plasmonic biosensor

E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko
Opt. Mater. Express 7(11) 4171-4182 (2017)

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]

Alexander S. Roberts, Manohar Chirumamilla, Deyong Wang, Liqiong An, Kjeld Pedersen, N. Asger Mortensen, and Sergey I. Bozhevolnyi
Opt. Mater. Express 8(12) 3717-3728 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
    [Crossref] [PubMed]
  2. Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Huang, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6, 22659 (2106).
    [Crossref]
  3. P. Berini and I. D. Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
    [Crossref]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  5. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  6. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  7. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref] [PubMed]
  8. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavlengths,” Opt. Mater. Express 2(4), 478 (2012).
    [Crossref]
  9. H. E. Cheng and Y. W. Wen, “Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition,” Surf. Coat. Tech. 179(1), 103–109 (2004).
    [Crossref]
  10. J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
    [Crossref]
  11. H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
    [Crossref]
  12. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
    [Crossref]
  13. C. M. Zgrabik and E. L. Hu, “Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,” Opt. Mater. Express 5(12), 2786 (2015).
    [Crossref]
  14. Y. Wang, A. Capretti, and L. D. Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
    [Crossref]
  15. I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
    [Crossref]
  16. Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
    [Crossref]
  17. H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
    [Crossref]
  18. H. Kim, “Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing,” J. Vac. Sci. Technol. B 21(6), 2231 (2003).
    [Crossref]
  19. E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
    [Crossref]
  20. W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
    [Crossref]
  21. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
    [Crossref]
  22. Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
    [Crossref] [PubMed]

2016 (4)

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

2013 (1)

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

2012 (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavlengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2011 (2)

P. Berini and I. D. Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

2006 (1)

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

2005 (1)

H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
[Crossref]

2004 (1)

H. E. Cheng and Y. W. Wen, “Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition,” Surf. Coat. Tech. 179(1), 103–109 (2004).
[Crossref]

2003 (3)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

H. Kim, “Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing,” J. Vac. Sci. Technol. B 21(6), 2231 (2003).
[Crossref]

1985 (1)

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Aarnink, A. A. I.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

Barnett, S.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Baum, B. K.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Berini, P.

P. Berini and I. D. Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Boltasseva, A.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavlengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Capretti, A.

Chang, I. H.

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

Chen, P. Y.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Chen, W. C.

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

Cheng, H. E.

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
[Crossref]

H. E. Cheng and Y. W. Wen, “Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition,” Surf. Coat. Tech. 179(1), 103–109 (2004).
[Crossref]

Chou, B. T.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Chou, C. Y.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Chou, Y. H.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Chuang, Y. L.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Chung, Y. C.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Goldhaber-Gordon, D.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Greene, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Groenland, A. W.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guler, U.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guo, X. J.

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

Haung, J. Y.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Heil, S. B. S.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Hong, K. B.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Hsu, C. M.

H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
[Crossref]

Hu, E. L.

Hwang, J. M.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Johansson, B.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Kessels, W. M. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavlengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Kim, H.

H. Kim, “Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing,” J. Vac. Sci. Technol. B 21(6), 2231 (2003).
[Crossref]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Kovalgin, A. Y.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

Langereis, E.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Lee, W. J.

H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
[Crossref]

Lee, Y. J.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Leon, I. D.

P. Berini and I. D. Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

Li, W.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Lin, C. C.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Lin, C. T.

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

Lin, S. D.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Lin, T. R.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Lin, Y. R.

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

Lu, T. C.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Naik, G. V.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavlengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Negro, L. D.

Ni, X.

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Petach, T. A.

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Rockett, A.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Sands, T. D.

Schmitz, J.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

Schroeder, J. L.

Shalaev, V. M.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Sheu, J. K.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Shih, J. H.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Sundgren, J.

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

Tsai, M. T.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Van Bui, H.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

van de Sanden, M. C. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

Wang, Y.

Wang, Y. W.

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

Wen, Y. W.

H. E. Cheng and Y. W. Wen, “Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition,” Surf. Coat. Tech. 179(1), 103–109 (2004).
[Crossref]

Wolters, R. A. M.

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

Wu, S. T.

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

Wu, Y. M.

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Yang, Z. P.

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

Yao, Y. C.

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Yu, I. S.

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

Zgrabik, C. M.

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett. 108(5), 051110 (2016).
[Crossref]

Applied Sciences (1)

Z. P. Yang, H. E. Cheng, I. H. Chang, and I. S. Yu, “Atomic layer deposition TiO2 films and TiO2/SiNx stacks applied for silicon solar cells,” Applied Sciences 6(8), 233 (2016).
[Crossref]

Int. J. Photoenergy (1)

I. S. Yu, Y. W. Wang, H. E. Cheng, Z. P. Yang, and C. T. Lin, “Surface passivation and antireflection behavior of ALD TiO2 on n-Type silicon for solar cells,” Int. J. Photoenergy 2013, 431614 (2013).
[Crossref]

J. Appl. Phys. (1)

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma assisted atomic layer deposition,” J. Appl. Phys. 100(2), 023534 (2006).
[Crossref]

J. Electrochem. Soc. (1)

H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters, J. Schmitz, and A. Y. Kovalgin, “Growth kinetics and oxidation mechanism of ALD TiN thin films monitored by in situ spectroscopic ellipsometry,” J. Electrochem. Soc. 158(3), H214 (2011).
[Crossref]

J. Vac. Sci. Technol. A (1)

B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3(2), 303–307 (1985).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Kim, “Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing,” J. Vac. Sci. Technol. B 21(6), 2231 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

W. C. Chen, Y. R. Lin, X. J. Guo, and S. T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42(1), 208–212 (2003).
[Crossref]

Materials (Basel) (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials (Basel) 8(6), 3128–3154 (2015).
[Crossref]

Nano Lett. (1)

Y. H. Chou, Y. M. Wu, K. B. Hong, B. T. Chou, J. H. Shih, Y. C. Chung, P. Y. Chen, T. R. Lin, C. C. Lin, S. D. Lin, and T. C. Lu, “High-operation-temperature plasmonic nanolasers on single-crystalline aluminum,” Nano Lett. 16(5), 3179–3186 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, “Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Nanoscale 8(8), 4463–4474 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

P. Berini and I. D. Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Mater. Express (3)

Surf. Coat. Tech. (1)

H. E. Cheng and Y. W. Wen, “Correlation between process parameters, microstructure and hardness of titanium nitride films by chemical vapor deposition,” Surf. Coat. Tech. 179(1), 103–109 (2004).
[Crossref]

Thin Solid Films (1)

H. E. Cheng, W. J. Lee, and C. M. Hsu, “The effect of deposition temperature on the properties of TiN diffusion barriers prepared by atomic layer chemical vapor deposition,” Thin Solid Films 485(1-2), 59–65 (2005).
[Crossref]

Other (1)

Y. C. Yao, J. M. Hwang, Z. P. Yang, J. Y. Huang, C. C. Lin, W. C. Shen, C. Y. Chou, M. T. Wang, C. Y. Huang, C. Y. Chen, M. T. Tsai, T. N. Lin, J. L. Shen, and Y. J. Lee, “Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons,” Sci. Rep. 6, 22659 (2106).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The extracted complex dielectric function (real part ε1 and imaginary part ε2) for ALD TiN films deposited on different substrates at (a) 450 °C, (b) 500 °C, (c) 550 °C, and (d) 600 °C.
Fig. 2
Fig. 2 Cross-sectional TEM images of TiN film deposited at 550 °C on (a) Si(100) and (b) SiNx/Si substrates.
Fig. 3
Fig. 3 (a) Grazing incidence X-ray diffraction scan for ALD TiN films deposited at 550 °C on different substrates and the TiN film on Si(100) annealed at 700 °C. (b) X-ray diffraction of ALD TiN film deposited on sapphire at 550 °C.
Fig. 4
Fig. 4 The extracted ε1(λ) and ε2(λ) of ALD TiN films deposited on Si (100) substrates at different temperatures.
Fig. 5
Fig. 5 ε1(λ) and ε2(λ) for ALD TiN films deposited on Si (100) substrates at (a) 450 °C and (b) 550 °C, after post-deposition annealing at different temperatures.
Fig. 6
Fig. 6 AFM images for the TiN films on Si(100) deposited at 450 °C. (a) as-deposit, (b)-(d) annealed at 500 °C, 600 °C, and 700 °C, respectively.
Fig. 7
Fig. 7 Cross-sectional SEM image of ALD TiN-coated AAO template. Red dashed line indicates the AAO surface, and yellow dashed line the TiN surface after deposition.

Tables (1)

Tables Icon

Table 1 Summary of extracted thickness (Th.) and screened plasmonic wavelengths (λps) of ALD TiN films deposited on different substrates at different deposition temperatures and different post-deposition annealing temperatures.

Metrics