Abstract

Transparent Ho2O3 ceramics are fabricated and their magneto-optical characteristics are reported for the first time, to the best of our knowledge. The value of the Verdet constant was measured in the 560–1064 nm wavelength range, and the value at 1064 nm is 46.3 rad/Tm. This corresponds to the Verdet constant for terbium aluminum garnet (TAG), which is ~1.3 times higher than that of terbium gallium garnet (TGG). The in-line transmittance at 1 μm wavelength is only ~60%, but the optical properties can be further improved by optimizing sintering conditions. This is a new potential magneto-optic material that can be applicable for high-average-power lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics

Hiroaki Furuse, Ryo Yasuhara, Keijiro Hiraga, and Shengming Zhou
Opt. Mater. Express 6(1) 191-196 (2016)

Magneto-optic pyrochlore ceramics of Tb2Hf2O7 for Faraday rotator

Ryo Yasuhara and Akio Ikesue
Opt. Express 27(5) 7485-7490 (2019)

Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics

Ondrej Slezak, Ryo Yasuhara, Antonio Lucianetti, and Tomas Mocek
Opt. Express 23(10) 13641-13647 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  2. O. Slezak, R. Yasuhara, A. Lucianetti, and T. Mocek, “Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics,” Opt. Express 23(10), 13641–13647 (2015).
    [Crossref] [PubMed]
  3. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  4. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  5. H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [Crossref]
  6. C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
    [Crossref] [PubMed]
  7. H. Furuse, R. Yasuhara, K. Hiraga, and S. Zhou, “High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics,” Opt. Mater. Express 6(1), 191–196 (2016).
    [Crossref]
  8. Z. Chen, L. Yang, X. Wang, and H. Yin, “High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal,” Opt. Lett. 41(11), 2580–2583 (2016).
    [Crossref] [PubMed]
  9. C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
    [Crossref]
  10. I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
    [Crossref]
  11. J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
    [Crossref]
  12. R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
    [Crossref]
  13. A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
    [Crossref]
  14. V. Vasyliev, E. G. Villora, M. Nakamura, Y. Sugahara, and K. Shimamura, “UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3.,” Opt. Express 20(13), 14460–14470 (2012).
    [Crossref] [PubMed]
  15. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref] [PubMed]
  16. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
    [Crossref]
  17. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
    [Crossref]
  18. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
    [Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (3)

2013 (1)

2012 (2)

V. Vasyliev, E. G. Villora, M. Nakamura, Y. Sugahara, and K. Shimamura, “UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3.,” Opt. Express 20(13), 14460–14470 (2012).
[Crossref] [PubMed]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref] [PubMed]

2011 (3)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express 19(4), 3604–3611 (2011).
[Crossref] [PubMed]

2007 (1)

2002 (3)

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

1964 (1)

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Amos, N.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

Balabanov, S. S.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Chen, C.

A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, “Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power,” Opt. Mater. Express 4(10), 2127–2132 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref] [PubMed]

Chen, Z.

Dubinskii, M.

Fischer, R. X.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

Fujimoto, Y.

Furuse, H.

Garay, J. E.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

Grodkiewicz, W. H.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Hiraga, K.

Ikesue, A.

Kaminskii, A. A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

Kan, H.

Kawanaka, J.

Kawashima, T.

Khizroev, S.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

Lin, H.

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref] [PubMed]

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Lu, J.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

Lucianetti, A.

Medenbach, O.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

Merkle, L. D.

Michael, A.

Mocek, T.

Morales, J. R.

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

Nakamura, M.

Nakatsuka, M.

Newburgh, G. A.

Nozawa, H.

Palashov, O.

Palashov, O. V.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Permin, D. A.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Rubinstein, C. B.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Shannon, R. C.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

Shannon, R. D.

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

Shimamura, K.

Shirakawa, A.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Slezak, O.

Snetkov, I.

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

Snetkov, I. L.

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

Starobor, A.

Sugahara, Y.

Takaichi, K.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Teng, H.

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Tokita, S.

Ueda, K.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Van Uitert, L. G.

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

Vasyliev, V.

Villora, E. G.

Wang, X.

Word-Daniels, A.

Yagi, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Yanagitani, T.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

Yang, L.

Yasuhara, R.

Yi, Q.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref] [PubMed]

Yin, H.

Yoshida, H.

Zheleznov, D.

Zhou, S.

Appl. Phys. Lett. (4)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1-XRX)3Al5O12 (R=Y,Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref] [PubMed]

I. L. Snetkov, D. A. Permin, S. S. Balabanov, and O. V. Palashov, “Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics,” Appl. Phys. Lett. 108(16), 161905 (2016).
[Crossref]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002).
[Crossref]

J. Appl. Phys. (2)

J. R. Morales, N. Amos, S. Khizroev, and J. E. Garay, “Magneto-optical Faraday effect in nanocrystalline oxides,” J. Appl. Phys. 109(9), 093110 (2011).
[Crossref]

C. B. Rubinstein, L. G. Van Uitert, and W. H. Grodkiewicz, “Magneto-optical properties of rare earth (III) aluminum garnets,” J. Appl. Phys. 35(10), 3069–3070 (1964).
[Crossref]

J. Phys. Chem. Ref. Data (1)

R. D. Shannon, R. C. Shannon, O. Medenbach, and R. X. Fischer, “Refractive Index and Dispersion of Fluorides and Oxides,” J. Phys. Chem. Ref. Data 31, 931 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Y2O3 Ceramics – a Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(Part 2, No. 12A), L1373–L1375 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Opt. Mater. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 XRD patterns of Ho2O3 ceramics. The inset is a photo of the sample.
Fig. 2
Fig. 2 Optical transmitted spectrum of Ho2O3 ceramics.
Fig. 3
Fig. 3 Signal intensity as a function of analyzer angle at 1064 nm.
Fig. 4
Fig. 4 Verdet constant of Ho2O3 ceramics as a function of wavelength.

Tables (1)

Tables Icon

Table 1 Comparison of Verdet constant for different materials at 1 μm wavelength range.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1/( n 2 1 )=A/ λ 2 +B,
V= A λ 2 λ 0 2 ,

Metrics