Abstract

The refractive index of a type IIa CVD-grown single-crystal diamond was measured by ellipsometry from the near ultraviolet to the near infrared region of the spectrum. As a consequence, a one term Sellmeier Equation with coefficents of B1 = 4.658 and C1 = 112.5 for the refractive index of diamond, for the wavelength range from 300 to 1650 nm, was derived that is only as accurate as the input data, +/− 0.002. The experimental results in this paper between 800 and 1650 nm are new, adding to the values available in the literature.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intrinsic and extrinsic absorption of chemical vapor deposition single-crystal diamond from the middle ultraviolet to the far infrared

Scott Webster, Ying Chen, Giorgio Turri, Andrew Bennett, Benjamin Wickham, and Michael Bass
J. Opt. Soc. Am. B 32(3) 479-484 (2015)

Infrared refractive index of diamond

David F. Edwards and Ellen Ochoa
J. Opt. Soc. Am. 71(5) 607-608 (1981)

References

  • View by:
  • |
  • |
  • |

  1. G. Davies, “The Optical Properties of Diamond” in Chemistry and Physics of Carbon Vol. 13, P. L. Walker, Jr. and P. A. Thrower, Eds., (Marcel Dekker, 1977).
  2. A. M. Zaitsev, Optical Properties of Diamonds: A Data Handbook (Springer, 2001).
  3. F. Peter, “Uber Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ,” Z. Phys. 15(1), 358–368 (1923).
    [Crossref]
  4. E. A. Von, Wulfing, “Apparate zur optischen Untersuchung der Mineralien und neue optische Bestimmungen am Diamant und Eisenglanz,” in Mineralogische und Petrographische Mittheilungen (F Becke, Wien 1896)
  5. D. F. Edwards and E. Ochoa, “Infrared refractive index of diamond,” J. Opt. Soc. Am. 71(5), 607–608 (1981).
    [Crossref]
  6. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (1999).
  7. D. F. Edwards and H. R. Philipp, “Cubic carbon (diamond),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Inc., 1985).
  8. M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, “Tailoring the optical constants of diamond by ion implantation,” Opt. Mater. Express 2(5), 644 (2012).
    [Crossref]
  9. S. Webster, Y. Chen, G. Turri, A. Bennett, B. Wickham, and M. Bass, “Intrinsic and extrinsic absorption of chemical vapor deposition single-crystal diamond from the middle ultraviolet to the far infrared,” J. Opt. Soc. Am. B 32(3), 479–484 (2015).
    [Crossref]
  10. Y. Chen, S. Webster, B. Wickham, A. Bennett, and M. Bass, “Surface losses in the visible governed by Rayleigh scattering in synthetic diamonds,” Opt. Mater. Express 5(11), 2443–2447 (2015).
    [Crossref]
  11. E.M. Voronkova, B.H. Grechushnikov, G.I Distler, and I.P. Petrov, “Optical materials for infrared technique,” Izd. Nauka, Moscow.
  12. A. V. Kurdumov, V. G. Malogolovets, N. V. Novikov, A. H. Piljankevich, and L. A. Shulman, “Polimorphous modification of carbon and boron nitrate,” Metallurgija, (1994).

2015 (2)

2012 (1)

1981 (1)

1923 (1)

F. Peter, “Uber Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ,” Z. Phys. 15(1), 358–368 (1923).
[Crossref]

Azzam, R.M.A.

R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (1999).

Bashara, N.M.

R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (1999).

Bass, M.

Bennett, A.

Chen, Y.

Draganski, M. A.

Edwards, D. F.

Fairchild, B. A.

Finkman, E.

Ganesan, K.

Gibson, B. C.

Greentree, A. D.

Nabatova-Gabain, N.

Ochoa, E.

Peter, F.

F. Peter, “Uber Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ,” Z. Phys. 15(1), 358–368 (1923).
[Crossref]

Prawer, S.

Tomljenovic-Hanic, S.

Turri, G.

Webster, S.

Wickham, B.

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Mater. Express (2)

Z. Phys. (1)

F. Peter, “Uber Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ,” Z. Phys. 15(1), 358–368 (1923).
[Crossref]

Other (7)

E. A. Von, Wulfing, “Apparate zur optischen Untersuchung der Mineralien und neue optische Bestimmungen am Diamant und Eisenglanz,” in Mineralogische und Petrographische Mittheilungen (F Becke, Wien 1896)

G. Davies, “The Optical Properties of Diamond” in Chemistry and Physics of Carbon Vol. 13, P. L. Walker, Jr. and P. A. Thrower, Eds., (Marcel Dekker, 1977).

A. M. Zaitsev, Optical Properties of Diamonds: A Data Handbook (Springer, 2001).

E.M. Voronkova, B.H. Grechushnikov, G.I Distler, and I.P. Petrov, “Optical materials for infrared technique,” Izd. Nauka, Moscow.

A. V. Kurdumov, V. G. Malogolovets, N. V. Novikov, A. H. Piljankevich, and L. A. Shulman, “Polimorphous modification of carbon and boron nitrate,” Metallurgija, (1994).

R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (1999).

D. F. Edwards and H. R. Philipp, “Cubic carbon (diamond),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Inc., 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Refractive index as measured at five different locations on the same sample surface. For each location, the average of three azimuth angles is reported, and the standard deviation is used as the vertical error bars. Values from Peter (squares) [3], Wulfing (circles) [4] and Zaitsev (triangles) [2] are also reported. (d) Refractive index, average of 3 azimuth angles and 5 different locations on the sample surface.
Fig. 2
Fig. 2 Refractive index of diamond as measured in this work (circles) and the dispersion curves as generated by Eq. (1) (red full line) and Eq. (2) (green dashed line).

Tables (1)

Tables Icon

Table 1 The refractive index from 300 to 1650 nm as measured in this work (Column 2) and compared with results calculated using Eq. (3) (Column 3) and reported in [2], Zaitsev, (Column 4)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ )=1+ B 1 λ 2 λ 2 C 1 2
n 2 ( λ )=1+ B 1 λ 2 λ 2 C 1 2 + B 2 λ 2 λ 2 C 2 2
n 2 ( λ )=1+ 4.658 λ 2 λ 2 ( 112.5 nm ) 2

Metrics