Abstract

A sample of Fe:CdMnTe was grown from melt using the Bridgman technique and was polished and coated for use as a laser crystal. Optical spectroscopy techniques were used to determine the absorption and emission cross-sections of the sample at 80 K. A cryogenic free-running mid-IR laser was constructed in the X-cavity configuration. The laser output was centered at 5223 nm with a spectral width of 1 nm with a maximum average power of 810 mW. The laser exhibited a slope efficiency of 16.4% with respect to total pump power with a pulse repetition frequency of 400 Hz and a pulse duration of 220 μs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the performance of an Fe:ZnSe laser using a hot isostatic press

Jonathan W. Evans, Ronald W. Stites, and Thomas R. Harris
Opt. Mater. Express 7(12) 4296-4303 (2017)

Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]

S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and V. P. Gapontsev
Opt. Mater. Express 1(5) 898-910 (2011)

Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser

Shougui Ning, Guoying Feng, Hong Zhang, Wei Zhang, Shenyu Dai, Yao Xiao, Wei Li, Xiaoxu Chen, and Shouhuan Zhou
Opt. Mater. Express 8(4) 865-874 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. L. E. Myers, W. Bosenberg, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [Crossref] [PubMed]
  3. E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.
  4. R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.
  5. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0–4.5-μm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24, 1720–1722 (1999).
    [Crossref]
  6. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express 18, 15062–15072 (2010).
    [Crossref] [PubMed]
  7. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, “Mode-locked Cr2+:ZnSe laser,” Opt. Lett. 25, 168–170 (2000).
    [Crossref]
  8. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
    [Crossref]
  9. V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
    [Crossref]
  10. J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
    [Crossref]
  11. H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.
  12. M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
    [Crossref]
  13. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Monographs on the Physics And Chemistry of Materials (Clarendon Press, Oxford, 1989).
  14. M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
    [Crossref]
  15. Y.-Y. Zhou, “Near-infrared transitions in CdTe:Fe2+: dynamic Jahn–Teller effect,” Physica B: Condensed Matter 322, 61–67 (2002).
    [Crossref]
  16. V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
    [Crossref]
  17. W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.
  18. T. Sanamyan, S. Trivedi, and M. Dubinskii, “Fluorescence Properties of Fe2+–and Co2+–doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials,” Technical Report ARL-TR-5770 (2011).
  19. A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.
  20. D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
    [Crossref]
  21. K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
    [Crossref]
  22. R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
    [Crossref]
  23. L. Rothman, “HITRAN Online Line-by-Line Search,” http://hitran.org/lbl , (2015).
  24. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
    [Crossref]
  25. D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.
  26. J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37, 5021–5023 (2012).
    [Crossref]
  27. A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
    [Crossref]
  28. R. W. Stites, S. A. McDaniel, J. O. Barnes, D. M. Krein, J. H. Goldsmith, S. Guha, and G. Cook, “Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals,” Opt. Mater. Express 6, 3339–3353 (2016).
    [Crossref]
  29. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of selected topics in quantum electronics 11, 713–720 (2005).
    [Crossref]

2016 (1)

2015 (1)

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

2014 (2)

K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

2013 (1)

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

2012 (1)

2010 (1)

2008 (2)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

2006 (1)

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of selected topics in quantum electronics 11, 713–720 (2005).
[Crossref]

2002 (1)

Y.-Y. Zhou, “Near-infrared transitions in CdTe:Fe2+: dynamic Jahn–Teller effect,” Physica B: Condensed Matter 322, 61–67 (2002).
[Crossref]

2000 (1)

1999 (1)

1996 (1)

1995 (1)

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1992 (2)

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

1972 (1)

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Adams, J. J.

Akimov, V.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Badikov, D.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Barnes, J. O.

Becker, C. F.

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

Berg, J.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Berry, P.

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

Berry, P. A.

Bibeau, C.

Bicknell-Tassius, F. N.

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

Bliss, D.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.

Bosenberg, W.

L. E. Myers, W. Bosenberg, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[Crossref] [PubMed]

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Byer, R. L.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Carrig, T. J.

Cheung, E.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cook, G.

Deljouravesh, R.

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Dienes, A.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Doroshenko, M. E.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Dubinskii, M.

T. Sanamyan, S. Trivedi, and M. Dubinskii, “Fluorescence Properties of Fe2+–and Co2+–doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials,” Technical Report ARL-TR-5770 (2011).

Eckardt, R. C.

Evans, J.

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

Evans, J. W.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Fedorov, V.

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.

Fedorov, V. V.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Fejer, M. M.

Firszt, F.

K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
[Crossref]

Frolov, M.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Frolov, M. P.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Furdyna, J. K.

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Furu, L. H.

Gallian, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Gerasimenko, A. S.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Goldsmith, J. H.

Guha, S.

Henderson, B.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Monographs on the Physics And Chemistry of Materials (Clarendon Press, Oxford, 1989).

Hilyard, R.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Ho, J.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Hoefer, C.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Hömmerich, U.

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Imbusch, G. F.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Monographs on the Physics And Chemistry of Materials (Clarendon Press, Oxford, 1989).

Injeyan, H.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Ippen, E.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Jelínek, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Jelínková, H.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Jeong, J. Y.

Kenklies, F.

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

Kogelnik, H.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Komar, V. K.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Komine, H.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Korostelin, Y.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Korostelin, Y. V.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Kovalenko, N. O.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Kozlovskii, V. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Kozlovsky, V.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Kraus, M.

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

Krein, D. M.

Krol, D. M.

Kubecek, V.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Landman, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Landman, A. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Lynch, C.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.

Mallory, W.

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

Marasek, A.

K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
[Crossref]

Martinez, A.

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.

Martyshkin, D.

A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.

Martyshkin, D. V.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Mayur, A. J.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

McDaniel, S. A.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of selected topics in quantum electronics 11, 713–720 (2005).
[Crossref]

Miotkowski, I.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Mirov, M.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Mirov, S.

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.

Mirov, S. B.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Mislavskii, V.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

Moskalev, I.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Myers, L. E.

Nemec, M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Page, R. H.

Palese, S.

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

Palosz, W.

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

Payne, S. A.

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of selected topics in quantum electronics 11, 713–720 (2005).
[Crossref]

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.

Podmar’kov, Y.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Podmar’kov, Y. P.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Pollock, C. R.

Puzikov, V. M.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Ramdas, A. K.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Rodriguez, S.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Sanamyan, T.

T. Sanamyan, S. Trivedi, and M. Dubinskii, “Fluorescence Properties of Fe2+–and Co2+–doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials,” Technical Report ARL-TR-5770 (2011).

Savinova, S.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

Schepler, K.

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

Schepler, K. L.

Schubert, D.

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

Sennaroglu, A.

Shank, C.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Skasyrskii, Y. K.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Skasyrsky, Y. K.

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

Steinitz, M.

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Stites, R. W.

Strzalkowski, K.

K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
[Crossref]

Šulc, J.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Tomich, D. H.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.

Trivedi, S.

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

T. Sanamyan, S. Trivedi, and M. Dubinskii, “Fluorescence Properties of Fe2+–and Co2+–doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials,” Technical Report ARL-TR-5770 (2011).

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

Udo, M. K.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Vasilyev, S.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

Villeret, M.

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Voronov, A.

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

Voronov, A. A.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Vyhlídal, D.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Wagner, G. J.

Weil, R.

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Williams, L.

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

Yampolsky, O.

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Zagoruiko, Y. A.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

Zhou, Y.-Y.

Y.-Y. Zhou, “Near-infrared transitions in CdTe:Fe2+: dynamic Jahn–Teller effect,” Physica B: Condensed Matter 322, 61–67 (2002).
[Crossref]

Applied Physics Letters (1)

D. Schubert, M. Kraus, F. Kenklies, C. F. Becker, and F. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Applied Physics Letters 60, 2192 (1992).
[Crossref]

IEEE Journal of selected topics in quantum electronics (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal effects in Cr2+:ZnSe thin disk lasers,” IEEE Journal of selected topics in quantum electronics 11, 713–720 (2005).
[Crossref]

International Journal of Thermophysics (1)

K. Strzałkowski, F. Firszt, and A. Marasek, “Thermal Diffusivity Effusivity, and Conductivity of CdMnTe Mixed Crystals,” International Journal of Thermophysics 35, 2140–2149 (2014).
[Crossref]

Journal of Applied Physics (1)

R. Weil, O. Yampolsky, J. K. Furdyna, R. Deljouravesh, and M. Steinitz, “Some optical and thermal properties of Cd0.9Mn0.1Te,” Journal of Applied Physics 78, 6330–6331 (1995).
[Crossref]

Journal of Crystal Growth (1)

V. Fedorov, W. Mallory, S. Mirov, U. Hömmerich, S. Trivedi, and W. Palosz, “Iron-doped CdxMn1−xTe crystals for mid-IR room-temperature lasers,” Journal of Crystal Growth 310, 4438–4442 (2008).
[Crossref]

Laser Physics Letters (1)

M. Frolov, Y. V. Korostelin, V. Kozlovsky, V. Mislavskii, Y. P. Podmar’kov, S. Savinova, and Y. K. Skasyrsky, “Study of a 2-J pulsed Fe: ZnSe 4 μm laser,” Laser Physics Letters 10, 125001 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Optical Materials Express (1)

A. Martinez, L. Williams, V. Fedorov, and S. Mirov, “Gamma radiation-enhanced thermal diffusion of iron ions into II–VI semiconductor crystals,” Optical Materials Express 5, 558–565 (2015).
[Crossref]

Phys. Rev. B (1)

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K. Ramdas, and S. Rodriguez, “Electronic excitations of substitutional transition-metal ions in II–VI semiconductors: CdTe:Fe2+ and CdSe:Fe2+,” Phys. Rev. B 46, 7459–7468 (1992).
[Crossref]

Physica B: Condensed Matter (1)

Y.-Y. Zhou, “Near-infrared transitions in CdTe:Fe2+: dynamic Jahn–Teller effect,” Physica B: Condensed Matter 322, 61–67 (2002).
[Crossref]

Quantum Electronics (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrskii, and M. P. Frolov, “A continuous-wave Fe2+:ZnSe laser,” Quantum Electronics 38, 1113 (2008).
[Crossref]

Quantum Electronics, IEEE Journal of (3)

V. Fedorov, S. Mirov, A. Gallian, D. Badikov, M. Frolov, Y. Korostelin, V. Kozlovsky, A. Landman, Y. Podmar’kov, V. Akimov, and A. Voronov, “3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures,” Quantum Electronics, IEEE Journal of 42, 907–917 (2006).
[Crossref]

J. Evans, P. Berry, and K. Schepler, “A Passively Q-switched, CW-pumped Fe:ZnSe Laser,” Quantum Electronics, IEEE Journal of 50, 204–209 (2014).
[Crossref]

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” Quantum Electronics, IEEE Journal of 8, 373–379 (1972).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Other (9)

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, J. Ho, R. Hilyard, H. Komine, J. Berg, and W. Bosenberg, “High power conversion to mid-IR using KTP and ZGP OPOs,” in “Advanced Solid State Lasers,” (Optical Society of America, 1999), p. WC1.

R. D. Peterson, D. Bliss, C. Lynch, and D. H. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68750D.

H. Jelínková, M. E. Doroshenko, M. Jelínek, D. Vyhlídal, J. Šulc, M. Němec, V. Kubeček, Y. A. Zagoruiko, N. O. Kovalenko, A. S. Gerasimenko, V. M. Puzikov, and V. K. Komar, “Fe:ZnSe laser oscillation under cryogenic and room temperature,” (2013), vol. 8599, pp. 85990E.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids, Monographs on the Physics And Chemistry of Materials (Clarendon Press, Oxford, 1989).

W. Mallory, V. Fedorov, S. Mirov, U. Hömmerich, W. Palosz, and S. Trivedi, “Iron doped CdxMn1−xTe crystals: new gain media for mid-IR room temperature lasers,” in “Lasers and Applications in Science and Engineering,” (International Society for Optics and Photonics, 2008), pp. 68712T.

T. Sanamyan, S. Trivedi, and M. Dubinskii, “Fluorescence Properties of Fe2+–and Co2+–doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials,” Technical Report ARL-TR-5770 (2011).

A. Martinez, D. Martyshkin, V. Fedorov, and S. Mirov, “Spectroscopic characterization of Fe2+-doped II–VI ternary and quaternary mid-IR laser active powders,” in “SPIE LASE,” (International Society for Optics and Photonics, 2014), p. 89591Q.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, and S. B. Mirov, “High Average Power (35 W) Pulsed Fe:ZnSe laser tunable over 3.8-4.2 μm,” in “CLEO: Science and Innovations,” (Optical Society of America, 2015), pp. SF1F–2.

L. Rothman, “HITRAN Online Line-by-Line Search,” http://hitran.org/lbl , (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The un-corrected absorption and emission cross-sections of the Fe:CMT sample at 80 K. Absorption features due to atmospheric H2O and CO2 were verified using HITRAN Online [23].
Fig. 2
Fig. 2 The experimental configuration of the Fe:CMT laser. All optics were made of CaF2.
Fig. 3
Fig. 3 The output pulse train of the laser (top). A detailed view of the pulse shape (bottom). Both traces are the triggered average of 10 frames.
Fig. 4
Fig. 4 The output spectrum of the Fe:CMT laser. The wavelength resolution of the OSA was 0.7 nm; thus, the emission line is barely resolved.
Fig. 5
Fig. 5 Power scaling characteristics of the Fe:CMT laser. Data points are shown in red and a linear fit to the data is shown in black.

Tables (1)

Tables Icon

Table 1 Some physical properties of CdMnTe and Fe:CMT.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α = log ( I / I 0 ) / L
σ e m ( λ ) = λ 5 I f ( λ ) 8 π c n 2 τ r a d λ I f ( λ ) d λ
σ a b s ( ν ) = G 2 G 1 I a ( ν ) I a ( ν ) d ν ν σ e m ( ν ) d ν

Metrics