Abstract

An edge effect caused by a spontaneous bias on the anodizing current density at the edged area is found during electrochemical etching. On the porous silicon films formed by the electrochemical etching method, evidence of the edge effect appearing on the photoluminescence pattern is first proposed in the study. With an appropriate electrolytic cell design where a halo baffle is placed between the anode and cathode as a barrier to reactant flux on the outer ring, the flux at the edge would be curved. It results in various degrees of electrochemical reactions and various porous structures on the silicon wafer. The experimental results propose an exhaustive view at the edge area in electrochemical etching process, and also propose an optional selection for free-mask patterning technology of porous silicon.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction

Jia-Chuan Lin, Wei-Lun Chen, and Wei-Chih Tsai
Opt. Express 14(21) 9764-9769 (2006)

Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer

Ilaria Rea, Maurizio Casalino, Monica Terracciano, Lucia Sansone, Jane Politi, and Luca De Stefano
Opt. Express 24(21) 24413-24421 (2016)

Aging of porous silicon and the origin of blue shift

Tevhit Karacali, Bulent Cakmak, and Hasan Efeoglu
Opt. Express 11(10) 1237-1242 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Uhlir., “Electrolytic Shaping Germanium and Silicon,” Bell Syst. Tech. J. 35(2), 333–347 (1956).
    [Crossref]
  2. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
    [Crossref]
  3. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [Crossref]
  4. J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
    [Crossref]
  5. Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
    [Crossref]
  6. K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
    [Crossref] [PubMed]
  7. F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
    [Crossref] [PubMed]
  8. W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
    [Crossref]
  9. D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).
  10. A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).
  11. N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
    [Crossref] [PubMed]
  12. C. R. Chaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sensor. Actuat. Biol. Chem. 231, 310–323 (2015).
  13. C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
    [Crossref] [PubMed]
  14. N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
    [Crossref] [PubMed]
  15. P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
    [Crossref]
  16. M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
    [Crossref]
  17. M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
    [Crossref]
  18. J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).
  19. M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
    [Crossref]
  20. M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
    [Crossref] [PubMed]
  21. W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
    [Crossref]
  22. E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
    [Crossref]
  23. A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
    [Crossref]
  24. J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
    [Crossref]
  25. J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction,” Opt. Express 14(21), 9764–9769 (2006).
    [Crossref] [PubMed]
  26. G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
    [Crossref]
  27. S. Borini, “Cross-linked PMMA on Porous Silicon: An Effective Nanomask for Selective Silicon Etching,” J. Electrochem. Soc. 152(6), G482–G486 (2005).
    [Crossref]
  28. B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
    [Crossref]
  29. J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
    [Crossref]
  30. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1–R22 (1992).
    [Crossref]

2016 (11)

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
[Crossref]

J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).

W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
[Crossref]

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

2015 (5)

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

C. R. Chaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sensor. Actuat. Biol. Chem. 231, 310–323 (2015).

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

2014 (1)

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

2013 (2)

P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
[Crossref]

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

2012 (1)

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

2011 (1)

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

2007 (2)

J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
[Crossref]

J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
[Crossref]

2006 (1)

2005 (1)

S. Borini, “Cross-linked PMMA on Porous Silicon: An Effective Nanomask for Selective Silicon Etching,” J. Electrochem. Soc. 152(6), G482–G486 (2005).
[Crossref]

1997 (1)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
[Crossref]

1995 (1)

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

1992 (1)

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1–R22 (1992).
[Crossref]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

1956 (1)

A. Uhlir., “Electrolytic Shaping Germanium and Silicon,” Bell Syst. Tech. J. 35(2), 333–347 (1956).
[Crossref]

Abdul Hamid, M. A.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Ahmed, N. M.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Al-Hardan, N. H.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Alquier, D.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

Al-Rawi, H. N.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Anthony, R.

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

Ávila-García, A.

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

Ayat, M.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Baker, C.

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

Belhadj Mohamed, S.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Belhousse, S.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Ben Rabhaa, M.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Berbezier, I.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Bessais, B.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Bhattacharya, P.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Billoué, J.

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

Boarino, L.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Bocksrocker, T.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Borini, S.

S. Borini, “Cross-linked PMMA on Porous Silicon: An Effective Nanomask for Selective Silicon Etching,” J. Electrochem. Soc. 152(6), G482–G486 (2005).
[Crossref]

Boukherroub, R.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Bruns, M.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Calcott, P. D. J.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
[Crossref]

Canham, L.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Canham, L. T.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
[Crossref]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

Cao, M.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Capelle, M.

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

Chaudhuri, C. R.

C. R. Chaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sensor. Actuat. Biol. Chem. 231, 310–323 (2015).

Chen, W. L.

J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
[Crossref]

J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction,” Opt. Express 14(21), 9764–9769 (2006).
[Crossref] [PubMed]

Cheng, K.-Y.

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

Chiu, W.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Collins, S. D.

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1–R22 (1992).
[Crossref]

Concord, J.

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

Cullis, A. G.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
[Crossref]

Das, M.

M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
[Crossref]

Defforge, T.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Díaz-Torres, E.

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

Ensafi, A. A.

A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).

Ezzaouia, H.

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Farooq, A.

W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
[Crossref]

Fodor, B.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

Gabouze, N.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Gaidi, M.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Gautier, G.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

Gogolides, E.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Gole, J. L.

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

Grigoropoulos, S.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Hagström, M. V.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Hajjaji, A.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Hajji, M.

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

Halimaoui, A.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Hardy, N.

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

Hassen, M.

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

Hatsuzawa, T.

J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).

He, J.-N.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Hirvonen, J. T.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Holmes, R. J.

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

Hou, H. T.

J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
[Crossref]

Hourdakis, E.

P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
[Crossref]

Hu, J.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Hu, M.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Jalar, A.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Ji, P.-F.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Joo, J.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Kaasalainen, M. H.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Kar Keng, L.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Kechouane, M.

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Kim, D.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Kortshagen, U. R.

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

Kübel, C.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Laatar, F.

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

Laminack, W. I.

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

Lemmer, U.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Li, S.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Li, Z. Y.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Lin, J. C.

J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
[Crossref]

J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
[Crossref]

J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction,” Opt. Express 14(21), 9764–9769 (2006).
[Crossref] [PubMed]

Lin, Y.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Liu, S.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Lokesh, G. L. R.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Loni, A.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Lu, B.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

Maier-Flaig, F.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Mäkilä, E. M.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Menter, D. G.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Morillon, B.

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

Nassiopoulos, G.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Nassiopoulou, A. G.

P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
[Crossref]

Nath, P.

M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
[Crossref]

Othman, N. K.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Ozin, G. A.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Papadimitriou, D.

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Park, J.

J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).

Peña-Sierra, R.

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

Poveda, P.

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

Powell, A. K.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Previs, R.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Rezaei, B.

A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).

Rezaloo, F.

A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).

Rinck, J.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Romero-Paredes, G.

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

Rupaimoole, R.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Sailor, M. J.

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

Salonen, J. J.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Santos, H. A.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Sarafis, P.

P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
[Crossref]

Sarkar, D.

M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
[Crossref]

Shamsudin, R.

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Smida, A.

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

Smith, R. L.

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1–R22 (1992).
[Crossref]

Song, Y.-L.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Sood, A. K.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Stephan, M.

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Sun, X.-J.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Tian, M.-L.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Tsai, W. C.

J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
[Crossref]

J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
[Crossref]

J. C. Lin, W. L. Chen, and W. C. Tsai, “Photoluminescence from n-type porous silicon layer enhanced by a forward-biased np-junction,” Opt. Express 14(21), 9764–9769 (2006).
[Crossref] [PubMed]

Uhlir, A.

A. Uhlir., “Electrolytic Shaping Germanium and Silicon,” Bell Syst. Tech. J. 35(2), 333–347 (1956).
[Crossref]

Volk, D. E.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Wang, C. F.

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Wang, W.

W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
[Crossref]

Whiting, N.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Yan, D.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Yanagida, Y.

J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).

Zacharias, N. M.

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
[Crossref]

Zhou, F.-Q.

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Zhu, Y.

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

Acta Biomater. (1)

C. F. Wang, E. M. Mäkilä, M. H. Kaasalainen, M. V. Hagström, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, “Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy,” Acta Biomater. 16, 206–214 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[Crossref]

J. Joo, T. Defforge, A. Loni, D. Kim, Z. Y. Li, M. J. Sailor, G. Gautier, and L. T. Canham, “Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying,” Appl. Phys. Lett. 108(15), 153111 (2016).
[Crossref]

J. C. Lin, W. C. Tsai, and W. L. Chen, “Light emission and negative differential conductance of n-type nanoporous silicon with buried p-layer assistance,” Appl. Phys. Lett. 90(9), 091117 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

A. Uhlir., “Electrolytic Shaping Germanium and Silicon,” Bell Syst. Tech. J. 35(2), 333–347 (1956).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

M. Ben Rabhaa, M. Hajji, S. Belhadj Mohamed, A. Hajjaji, M. Gaidi, H. Ezzaouia, and B. Bessais, “Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells,” Eur. Phys. J. Appl. Phys. 57(2), 2130 (2012).
[Crossref]

IEEE SENSORS J. (1)

W. I. Laminack, N. Hardy, C. Baker, and J. L. Gole, “Approach to Multigas Sensing and Modeling on Nanostructure Decorated Porous Silicon Substrates,” IEEE SENSORS J. 15(11), 6491–6497 (2015).
[Crossref]

IEEE Trans. Electron Dev. (2)

P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “Dielectric Permittivity of Porous Si for Use as Substrate Material in Si-Integrated RF Devices,” IEEE Trans. Electron Dev. 60(4), 1436–1443 (2013).
[Crossref]

M. Capelle, J. Billoué, J. Concord, P. Poveda, and G. Gautier, “Porous Silicon/Silicon Hybrid Substrate Applied to the Monolithic Integration of Common-Mode and Bandpass RF Filters,” IEEE Trans. Electron Dev. 62(12), 4169–4173 (2015).
[Crossref]

J. Appl. Phys. (3)

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous Silicon,” J. Appl. Phys. 82(3), 909–965 (1997).
[Crossref]

B. Lu, T. Defforge, B. Fodor, B. Morillon, D. Alquier, and G. Gautier, “Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation,” J. Appl. Phys. 119(21), 213301 (2016).
[Crossref]

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1–R22 (1992).
[Crossref]

J. Electrochem. Soc. (1)

S. Borini, “Cross-linked PMMA on Porous Silicon: An Effective Nanomask for Selective Silicon Etching,” J. Electrochem. Soc. 152(6), G482–G486 (2005).
[Crossref]

J. Lumin. (1)

A. Smida, F. Laatar, M. Hassen, and H. Ezzaouia, “Structural and optical properties of vapor-etched porous GaAs,” J. Lumin. 176, 118–123 (2016).
[Crossref]

J. Med. Imaging (Bellingham) (1)

N. Whiting, J. Hu, N. M. Zacharias, G. L. R. Lokesh, D. E. Volk, D. G. Menter, R. Rupaimoole, R. Previs, A. K. Sood, and P. Bhattacharya, “Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer,” J. Med. Imaging (Bellingham) 3(3), 036001 (2016).
[Crossref] [PubMed]

Mater. Lett. (1)

Y.-L. Song, X.-J. Sun, Y. Lin, P.-F. Ji, J.-N. He, M.-L. Tian, and F.-Q. Zhou, “Synthesis and white photoluminescence of porous polysilicon,” Mater. Lett. 182, 102–105 (2016).
[Crossref]

Mater. Manuf. Process. (1)

W. Zhang, A. Farooq, and W. Wang, “Generating Silicon Nanoparticles Using Spark Erosion by Flushing High-Pressure Deionized Water,” Mater. Manuf. Process. 31(2), 113–118 (2016).
[Crossref]

Mater. Sci. Semicond. Process. (1)

E. Díaz-Torres, G. Romero-Paredes, R. Peña-Sierra, and A. Ávila-García, “Formation and characterization of porous siliconfilms obtained by catalyzed vapor-chemical etching,” Mater. Sci. Semicond. Process. 40, 533–538 (2015).
[Crossref]

Microelectron. Eng. (1)

J. C. Lin, H. T. Hou, and W. C. Tsai, “A Mask-Free Method of Patterned Porous Silicon Formation by a Localized Electrical Field,” Microelectron. Eng. 84(2), 336–339 (2007).
[Crossref]

Nano Lett. (2)

K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices,” Nano Lett. 11(5), 1952–1956 (2011).
[Crossref] [PubMed]

F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker, M. Bruns, C. Kübel, A. K. Powell, G. A. Ozin, and U. Lemmer, “Multicolor Silicon Light-Emitting Diodes (SiLEDs),” Nano Lett. 13(2), 475–480 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

M. Ayat, S. Belhousse, L. Boarino, N. Gabouze, R. Boukherroub, and M. Kechouane, “Formation of nanostructured silicon surfaces by stain etching,” Nanoscale Res. Lett. 9(1), 482 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Sensor. Actuat. Biol. Chem. (4)

D. Yan, S. Li, M. Hu, S. Liu, Y. Zhu, and M. Cao, “Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure,” Sensor. Actuat. Biol. Chem. 223, 626–633 (2016).

A. A. Ensafi, F. Rezaloo, and B. Rezaei, “Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide,” Sensor. Actuat. Biol. Chem. 231, 239–244 (2016).

C. R. Chaudhuri, “A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor,” Sensor. Actuat. Biol. Chem. 231, 310–323 (2015).

J. Park, Y. Yanagida, and T. Hatsuzawa, “Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources,” Sensor. Actuat. Biol. Chem. 233, 136–143 (2016).

Sensors (Basel) (1)

N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu, and H. N. Al-Rawi, “High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor,” Sensors (Basel) 16(6), 839 (2016).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

M. Das, P. Nath, and D. Sarkar, “Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure,” Superlattices Microstruct. 90, 77–86 (2016).
[Crossref]

Thin Solid Films (1)

G. Nassiopoulos, S. Grigoropoulos, L. Canham, A. Halimaoui, I. Berbezier, E. Gogolides, and D. Papadimitriou, “Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates,” Thin Solid Films 255(1-2), 329–333 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of experimental setup for preparing PS samples with four baffle designs including circular- (Case-A), square- (Case-B), triangle- (Case-C) and triple-circular- (Case-D) hollows inside.
Fig. 2
Fig. 2 The naked-eye photos of all twenty PS samples under UV-light excitation at room-temperature, corresponding to four baffle cases (Cases-A~D) and five distance conditions (d = 0, 1, 3, 5, and 10 mm).
Fig. 3
Fig. 3 (a) The corresponding top-view SEM pictures for Green-, Red-, and Dark- districts are shown, respectively; (b) PL spectra of Sample-A01 for demonstration.
Fig. 4
Fig. 4 Illustration of the mechanism of edge effect.
Fig. 5
Fig. 5 Naked-eye photos and related SEM pictures on different districts with different color light emission on Sample-A00, A01, A03, A05, and A10.

Tables (1)

Tables Icon

Table 1 Current Densities of (Jb, Jo) at baffle hollow and at Si-wafer inside O-ring for all cases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Si+2HF+2 h + SiF 2 + 2H +
SiF 2 +4HF H 2 + H 2 SiF 6

Metrics