Abstract

It remains a challenge to characterize the doping type in nanowires (NWs). We report in this paper a novel way to probe the doping type in GaN NWs by photoassisted kelvin probe force microscopy (KPFM), as a proper example showing that this approach is straight forward, effective and practical. Through illumination with super-bandgap light, photo-generated electrons in the n-region are swept away from the surface due to the electric field in the space-charge region, thus the holes move to the surface; while in contrast, electrons in the p-region will move to the surface. The fact that the quasi-Fermi level moves upwards in n-type while downwards in p-type identifies the doping type of GaN NWs, and is clearly revealed by the contact potential difference detected by photoassisted KPFM.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on strain relaxation distribution in GaN-based μLEDs by Kelvin probe force microscopy and micro-photoluminescence

Jinglin Zhan, Zhizhong Chen, Qianqian Jiao, Yulong Feng, Chengcheng Li, Yifan Chen, Yiyong Chen, Fei Jiao, Xiangning Kang, Shunfeng Li, Qi Wang, Tongjun Yu, Guoyi Zhang, and Bo Shen
Opt. Express 26(5) 5265-5274 (2018)

Review of gallium-oxide-based solar-blind ultraviolet photodetectors

Xuanhu Chen, Fangfang Ren, Shulin Gu, and Jiandong Ye
Photon. Res. 7(4) 381-415 (2019)

Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles

Meng-Lin Lu, Tzu-Yun Lin, Tong-Min Weng, and Yang-Fang Chen
Opt. Express 19(17) 16266-16272 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291(5505), 851–853 (2001).
    [Crossref] [PubMed]
  2. Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
    [Crossref]
  3. K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
    [Crossref] [PubMed]
  4. H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
    [Crossref]
  5. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [Crossref] [PubMed]
  6. S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
    [Crossref] [PubMed]
  7. M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
    [Crossref]
  8. X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
    [Crossref]
  9. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
    [Crossref]
  10. E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
    [Crossref] [PubMed]
  11. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
    [Crossref] [PubMed]
  12. S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
    [Crossref]
  13. G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
    [Crossref] [PubMed]
  14. G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).
  15. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
    [Crossref]
  16. Z. Zhang and J. T. Yates., “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112(10), 5520–5551 (2012).
    [Crossref] [PubMed]
  17. L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surf. Interface Anal. 31(10), 954–965 (2001).
    [Crossref]
  18. L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment and application,” Surf. Sci. Rep. 37(1-5), 1–206 (1999).
    [Crossref]
  19. T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
    [Crossref]
  20. L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
    [Crossref]
  21. C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
    [Crossref]

2016 (1)

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

2015 (2)

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

2013 (1)

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

2012 (2)

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Z. Zhang and J. T. Yates., “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112(10), 5520–5551 (2012).
[Crossref] [PubMed]

2011 (2)

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

2010 (2)

E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
[Crossref] [PubMed]

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

2009 (1)

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

2008 (1)

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

2006 (1)

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

2003 (1)

H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
[Crossref]

2002 (1)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

2001 (3)

Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291(5505), 851–853 (2001).
[Crossref] [PubMed]

L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surf. Interface Anal. 31(10), 954–965 (2001).
[Crossref]

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

1999 (1)

L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment and application,” Surf. Sci. Rep. 37(1-5), 1–206 (1999).
[Crossref]

1991 (1)

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

1979 (1)

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Bacher, G.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Bailey, L. R.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Bakkers, E. P.

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

Berkovitch, N.

E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
[Crossref] [PubMed]

Boag, A.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Buh, G. H.

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

Calleja, E.

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Chalker, P. R.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Chang, K.

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Chang, L.

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Cho, H.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Choi, H. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Chowdhury, F. A.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Chung, H. J.

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

Chung, K. S.

H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
[Crossref]

Chye, P. W.

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Considine, L.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Cui, Y.

Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291(5505), 851–853 (2001).
[Crossref] [PubMed]

Elias, G.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Frolov, S. M.

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

Gacevic, Ž.

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

Glatzel, T.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Gradecak, S.

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

Grandal, J.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Guo, H.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Gutsche, C.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Gwo, S.

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

Jefferson, P. H.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Joyce, T. B.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Juan Mangas, T.

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

Kang, T. W.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
[Crossref]

Kano, S.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Kibria, M. G.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Kim, H. M.

H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
[Crossref]

King, P. D. C.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Knutsen, K. P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Koren, E.

E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
[Crossref] [PubMed]

Kouwenhoven, L. P.

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

Kronik, L.

L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surf. Interface Anal. 31(10), 954–965 (2001).
[Crossref]

L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment and application,” Surf. Sci. Rep. 37(1-5), 1–206 (1999).
[Crossref]

Kuk, Y. J.

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

Kuo, C.

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Kwon, S.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Lee, S.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Lee, S. J.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Lieber, C. M.

Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291(5505), 851–853 (2001).
[Crossref] [PubMed]

Lin, S.

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Lindau, I.

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Lochthofen, A.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

López-Romero, D.

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

Lu, H.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Lu, M. Y.

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

Lu, Y. J.

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

Maeda, K.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Majima, Y.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

McConville, C. F.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Mertin, W.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Meyer, E.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Mi, Z.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Muoz, E.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Nadj-Perge, S.

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

Nonnenmacher, M.

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

O’Boyle, M. P.

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Okabayashi, N.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Pereiro, J.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Piper, L. F. J.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Prost, W.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Ram, S. D. G.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Regolin, I.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Rosenwaks, Y.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
[Crossref] [PubMed]

Ryu, S. R.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Sakamoto, M.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Sánchez-García, M. A.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

Saykally, R. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schaff, W. J.

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Schwarzman, A.

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Shapira, Y.

L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surf. Interface Anal. 31(10), 954–965 (2001).
[Crossref]

L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment and application,” Surf. Sci. Rep. 37(1-5), 1–206 (1999).
[Crossref]

Shin, S.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Shiu, H.

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Skeath, P. R.

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Spicer, W. E.

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Su, C. Y.

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Takeshita, S.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Tanaka, D.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Tegude, F. J.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Teranishi, T.

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Trudeau, M. L.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Veal, T. D.

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

Vinaji, S.

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Wickramasinghe, H. K.

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Woo, Y.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Yang, P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Yang, W.

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Yates, J. T.

Z. Zhang and J. T. Yates., “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112(10), 5520–5551 (2012).
[Crossref] [PubMed]

Yi, J. H.

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

Yoon, I. T.

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

Zhang, Z.

Z. Zhang and J. T. Yates., “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112(10), 5520–5551 (2012).
[Crossref] [PubMed]

Zhao, S.

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

Zhou, X.

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

ACS Nano (1)

K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, and Y. Majima, “Logic Operations of Chemically Assembled Single-Electron Transistor,” ACS Nano 6(3), 2798–2803 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods,” Adv. Mater. 15(78), 567–569 (2003).
[Crossref]

Appl. Phys. Lett. (6)

M. G. Kibria, F. A. Chowdhury, S. Zhao, M. L. Trudeau, H. Guo, and Z. Mi, “Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light,” Appl. Phys. Lett. 106(11), 113105 (2015).
[Crossref]

X. Zhou, M. Y. Lu, Y. J. Lu, S. Gwo, and S. Gradečak, “Correlation of doping, structure, and carrier dynamics in a single GaN nanorod,” Appl. Phys. Lett. 102(25), 253104 (2013).
[Crossref]

M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58(25), 2921–2923 (1991).
[Crossref]

Ž. Gačević, D. López-Romero, T. Juan Mangas, and E. Calleja, “A top-gate GaN nanowire metal–semiconductor field effect transistor with improved channel electrostatic control,” Appl. Phys. Lett. 108(3), 033101 (2016).
[Crossref]

T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Appl. Phys. Lett. 89(20), 202110 (2006).
[Crossref]

C. Kuo, S. Lin, K. Chang, H. Shiu, and L. Chang, “Is electron accumulation universal at InN polar surfaces?” Appl. Phys. Lett. 98(5), 052101 (2011).
[Crossref]

Appl. Surf. Sci. (1)

S. R. Ryu, S. D. G. Ram, S. J. Lee, H. Cho, S. Lee, T. W. Kang, S. Kwon, W. Yang, S. Shin, and Y. Woo, “Vertical current-flow enhancement via fabrication of GaN nanorod p–n junction diode on graphene,” Appl. Surf. Sci. 347, 793–798 (2015).
[Crossref]

Beilstein J. Nanotechnol. (1)

G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, and Y. Rosenwaks, “The role of the cantilever in Kelvin probe force microscopy measurements,” Beilstein J. Nanotechnol. 2, 252–260 (2011).
[Crossref] [PubMed]

Chem. Rev. (1)

Z. Zhang and J. T. Yates., “Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces,” Chem. Rev. 112(10), 5520–5551 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon, and Y. J. Kuk, “Electrical characterization of an operating Si p-n-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy,” J. Appl. Phys. 90, 443 (2001).

L. R. Bailey, T. D. Veal, P. D. C. King, C. F. McConville, J. Pereiro, J. Grandal, M. A. Sánchez-García, E. Muoz, and E. Calleja, “Band bending at the surfaces of In-rich InGaN alloys,” J. Appl. Phys. 104(11), 113716 (2008).
[Crossref]

J. Vac. Sci. Technol. (1)

W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III–V insulator interface states formation,” J. Vac. Sci. Technol. 16(5), 1422–1433 (1979).
[Crossref]

Nano Lett. (1)

E. Koren, N. Berkovitch, and Y. Rosenwaks, “Measurement of active dopant distribution and diffusion in individual silicon nanowires,” Nano Lett. 10(4), 1163–1167 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, “Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy,” Nanotechnology 20(38), 385702 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single Gallium Nitride Nanowire Lasers,” Nat. Mater. 1(2), 106–110 (2002).
[Crossref] [PubMed]

Nature (1)

S. Nadj-Perge, S. M. Frolov, E. P. Bakkers, and L. P. Kouwenhoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature 468(7327), 1084–1087 (2010).
[Crossref] [PubMed]

Science (1)

Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291(5505), 851–853 (2001).
[Crossref] [PubMed]

Surf. Interface Anal. (1)

L. Kronik and Y. Shapira, “Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering,” Surf. Interface Anal. 31(10), 954–965 (2001).
[Crossref]

Surf. Sci. Rep. (1)

L. Kronik and Y. Shapira, “Surface photovoltage phenomena: theory, experiment and application,” Surf. Sci. Rep. 37(1-5), 1–206 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Energy band diagram illustrating how the potential profile is measured for a GaN p-n junction. Evac is the local vacuum level, Ef is the Fermi level, and Ev and Ec are the valence and conduction band edges of the GaN NW, respectively. (b) Energy band diagram of a p-n junction considering the surface states. (c) Band bending of p-n junctions in dark and under illuminations depicted by solid lines and dashed lines, respectively.
Fig. 2
Fig. 2 SEM images of the NW sample: (a) lateral view and (b) top view. The vertically aligned GaN NWs are around 40 nm in diameter on the bottom, and about 130 nm on the top due to the lower growth temperature while doping Mg. The density of the NW varies in the range of 1−2 × 107 cm−2.
Fig. 3
Fig. 3 (a) AFM topography (1 × 1 μm2) and (b) the corresponding KPFM map of GaN NWs. The scale bar is 200 nm. (c) The vertical height and VCPD profiles along the marked dash line. (d) Average VCPD of NWs varying with the Mg cell temperature.
Fig. 4
Fig. 4 (a) AFM topography of a single p-n junction and (b) corresponding 2D KPFM voltage image. (c) AFM topography of an undoped NW and (d) corresponding 2D KPFM voltage image, and the scale bar is 200 nm. (e) The vertical height and VCPD profile of the doped and undoped NWs along the marked line, respectively.
Fig. 5
Fig. 5 VCPD of p-n junctions with varying the Mg cell temperature. Inset shows the CPD with varying temperature. For the convenience of comparison, the CPD value at the n region is unified.
Fig. 6
Fig. 6 (a) The KPFM image of p-n junction in dark and (b) under 15 mW illumination. The scale bar is 200 nm. (c) CPD of p-n junctions under illumination with varying light power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n= N C exp[ ( E C E f e ) / k B T ]
E f e = E C + k B T( lnnln N C )
X m = [ 2ε ε 0 e ( V D V ) N A + N D N A N D ] 1 2

Metrics