Abstract

Interaction between upconversion nanoparticles (UCNPs) and natural photosensitizers (Ps) has not been investigated so far. In order to make new near infrared photosensitizers, the conjugates (Ps-UCNPs) were synthesized by NaYF4 as a substrate and hydrothermal reaction of lanthanide ions Yb3+ with Er3+ or Tm3+, and then interaction with pheophorbide A (Pha) and resveratrol (Res) respectively. Based on the intensity of the fluorescence emission by Ps-UCNPs, the optimal reaction conditions are 16 mM Yb3+/0.4 mM Er3+ at 120°C for 20 h for Pha-UCNPs, and 80 mM Yb3+/0.1 mM Tm3+ at 180°C for 20 h for Res-UCNPs. The nanoparticles have a hexagonal phase or cubic phase with an average diameter size of 220 nm, and selectively emit the stronger red (670 nm) or violet (380 nm) fluorescence. Pha-UCNPs show the strong effects, and the maximum yield of singlet oxygen was seven times more than UCNPs and pheophorbide A alone under 980 nm illumination. It is attributed to the efficient resonance energy transfer from UCNPs to pheophorbide A. Pha-UCNPs is an effective NIR photosensitizer with potential for deep tissue disease photodynamic therapy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of EDTA on the formation and upconversion of NaYF4:Yb3+/ Er3+

Ruisen Zhou and Xia Li
Opt. Mater. Express 6(4) 1313-1320 (2016)

Controlling the multicolor upconversion luminescence in CaF2 nanocrystals doped with Yb3+, Er3+ and Nd3+ ions under the excitation of a 808 nm laser

Xiaofan Zhao, Zining Yang, Xu Yang, Rui Wang, Maohui Yuan, Kai Han, Zongfu Jiang, Hongyan Wang, and Xiaojun Xu
Opt. Mater. Express 9(12) 4578-4587 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
    [Crossref] [PubMed]
  2. M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
    [Crossref] [PubMed]
  3. A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
    [Crossref] [PubMed]
  4. S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
    [Crossref] [PubMed]
  5. C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
    [Crossref] [PubMed]
  6. B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
    [Crossref] [PubMed]
  7. H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
    [Crossref]
  8. X. Huang, “Giant enhancement of upconversion emission in NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+ core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
    [Crossref] [PubMed]
  9. F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
    [Crossref]
  10. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [Crossref] [PubMed]
  11. Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
    [Crossref]
  12. G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
    [Crossref]
  13. X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
    [Crossref] [PubMed]
  14. Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
    [Crossref]
  15. X. Y. Huang, “Tuning size and upconversion luminescence of NaYbF4:Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping,” Opt. Mater. Express 6(7), 2165–2176 (2016).
    [Crossref]
  16. X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
    [Crossref]
  17. J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
    [Crossref] [PubMed]
  18. M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
    [Crossref] [PubMed]
  19. M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
    [PubMed]
  20. M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
    [Crossref] [PubMed]
  21. Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
    [Crossref] [PubMed]
  22. A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
    [PubMed]
  23. H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
    [Crossref] [PubMed]
  24. Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
    [Crossref] [PubMed]
  25. Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
    [Crossref] [PubMed]
  26. M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
    [Crossref]
  27. S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
    [Crossref]
  28. D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
    [Crossref] [PubMed]
  29. A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
    [Crossref] [PubMed]
  30. U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
    [Crossref] [PubMed]
  31. Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
    [Crossref] [PubMed]
  32. Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
    [Crossref]
  33. S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
    [Crossref] [PubMed]
  34. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
    [Crossref] [PubMed]
  35. X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
    [Crossref]
  36. X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
    [Crossref]
  37. H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
    [Crossref]
  38. T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
    [Crossref]
  39. J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
    [Crossref] [PubMed]
  40. X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaYF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
    [Crossref] [PubMed]
  41. F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
    [Crossref]

2017 (1)

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

2016 (2)

2015 (7)

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

X. Huang, “Giant enhancement of upconversion emission in NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+ core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
[Crossref] [PubMed]

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaYF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
[Crossref] [PubMed]

2014 (7)

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

2013 (2)

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

2012 (3)

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

2011 (5)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

2010 (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

2009 (1)

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

2008 (2)

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

2007 (2)

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

2006 (4)

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

2005 (1)

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

2003 (2)

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

1991 (1)

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Abrahamse, H.

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Achilefuc, S.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Allakhverdiev, S. I.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Aparicio-Fabre, R.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Bai, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Buga, A. M.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Cao, W.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Castiglioni, B.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Chang, E.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Chatterjee, D. K.

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Chen, B.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Chen, H.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Chen, Q.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Chen, X.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Chen, Z.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Cheng, J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Cheng, L.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Cheng, S. H.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Chi, X.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Chow, M.

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Cremonesi, P.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Cui, S.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Dai, Q.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Dai, S.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Darbandi, M.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Davies, M. J.

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

Dong, B.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Ehlert, O.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Encarnación-Guevara, S.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Ezoulin, M. J.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Fan, L.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Fan, X.

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Fang, F.

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Fuentes, S. I.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Girard, L.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Gu, Y. J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Güdel, H. U.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Guillén, G.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Haase, M.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Hamblin, M. R.

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Hao, X.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Hasan, T.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

He, W.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Heer, S.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Hernández, G.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Hoopes, P. J.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Hou, W.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Hu, L.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Huang, K.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Huang, M.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Huang, X.

Huang, X. Y.

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

X. Y. Huang, “Tuning size and upconversion luminescence of NaYbF4:Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping,” Opt. Mater. Express 6(7), 2165–2176 (2016).
[Crossref]

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

Idris, N. M.

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

Iñiguez, L. P.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Jeong, P. H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Jiang, Z.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Jiao, Y.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Jin, J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Kim, Y. C.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Ko, H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Lee, V. H.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Lehmann, O.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Lei, Y.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Li, F.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Li, X.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Li, Z.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Liang, Y. R.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Lin, J.

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

Liu, J. L.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Z.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Lu, J.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Lu, J. L.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Lu, S.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Lucky, S. S.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Luo, X.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Ma, E.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Mai, H. X.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Man, C. W.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Mi, C. C.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Mitran, S.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Muhammad Idris, N.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Murata, N.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Murowchick, J. B.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Musazzi, U. M.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Nann, T.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Nishiyama, Y.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Pan, G.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Pang, T.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Panzeri, D.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Pogue, B. W.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Popa-Wagner, A.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Qian, Z.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Ramírez, M.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Ren, J.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Ren, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Shi, M.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Sivanesan, S.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Song, H.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Soo, K. C.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Sparvoli, F.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Stella, A.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Strozzi, F.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Sun, H.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Sun, L. D.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Tan, W. B.

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

Tao, H.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Tarr, M.

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Thomann, R.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Tian, J.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Tu, D.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Valenzeno, D. P.

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Wang, C.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Wang, H.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Wang, M.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Wang, R.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Wang, T.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Wei, Y.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Wen, L.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Wong, W. T.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Wu, B.

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Wu, X. L.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Xing, D.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Xing, H.

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Xing, M.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Xu, S.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Xu, S. K.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Xu, Z.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Yan, C. H.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Yang, S.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Yang, X.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Yang, Y.

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Ye, J. H.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Yi, G. S.

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Yong, Z.

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

Yoon, H. E.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Yoon, J. H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

You, H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Youan, B. B.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Youm, I.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Zamorano-Sánchez, D.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Zhang, F.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Zhang, L.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Zhang, Y.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Zhang, Y. W.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Zhang, Y. X.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Zhao, D.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Zheng, W.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Zheng, X. Q.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Zhou, A.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Zhou, S.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Zhu, H.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

ACS Nano (3)

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

Biochem. J. (1)

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Biomaterials (1)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Bioorg. Med. Chem. (1)

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Crit. Rev. Eukaryot. Gene Expr. (1)

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Food Chem. (1)

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Int. J. Nanomedicine (2)

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

J. Biomed. Nanotechnol. (1)

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

J. Lumin. (1)

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

J. Mater. Chem. (1)

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

J. Mol. Cell. Cardiol. (1)

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Mater. Res. Bull. (1)

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Mikrochim. Acta (1)

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Mol. Pharm. (1)

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

Nanoscale (1)

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Opt. Mater. Express (1)

Oxid. Med. Cell. Longev. (1)

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Photodiagn. Photodyna. (1)

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

Physiol. Plant. (2)

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Matching of emission spectra of UCNPs with absorption spectra of pheophorbide A (Pha, a) and resveratrol (Res, b).
Fig. 2
Fig. 2 Fluorescence emission spectra of pheophorbide A and resveratrol excited at 419 nm and 293 nm respectively.
Fig. 3
Fig. 3 Emission fluorescence spectra of Pha-UCNPs with different concentration of Yb3+ (a) and Er3+ (b), reactive temperature (c) and time (d).
Fig. 4
Fig. 4 Fluorescence emission spectra of Res-UCNPs with different concentration of Yb3+ (a) and Tm3+ (b) at different temperature (c) and reactive time (d).
Fig. 5
Fig. 5 X-ray powder diffraction pattern (XRD) of Ps-UCNPs: (a) Pha-UCNPs, (b) Res-UCNPs, (c) β-NaYF4, (d) α-NaYF4.
Fig. 6
Fig. 6 Scanning electron micrograph of the UCNPs and Ps-UCNPs at 20,000 × amplification.
Fig. 7
Fig. 7 Comparison of singlet oxygen production among Ps-UCNPs (a) and Pha-UCNPs under 980 nm illumination at different time (b). Data were presented as mean ± standard deviation in 3 repetitions. There was significant difference (p<0.01) between Pha-UCNPs and Res-UCNPs, and between Pha-UCNPs and UCNPs or pheophorbide A.
Fig. 8
Fig. 8 Upconversion emission spectra and photographs ofNaYF4:Yb3+/Er3+ (a) and NaYF4:Yb3+/Tm3+ (b) with the 980 nm laser as excitation light source in the left (A). Schematic energy level diagram showing the upconversion mechanism of the Yb3+, Er3+/Tm3+ co-doped nanoparticles in the right (B).

Metrics