Abstract

Interaction between upconversion nanoparticles (UCNPs) and natural photosensitizers (Ps) has not been investigated so far. In order to make new near infrared photosensitizers, the conjugates (Ps-UCNPs) were synthesized by NaYF4 as a substrate and hydrothermal reaction of lanthanide ions Yb3+ with Er3+ or Tm3+, and then interaction with pheophorbide A (Pha) and resveratrol (Res) respectively. Based on the intensity of the fluorescence emission by Ps-UCNPs, the optimal reaction conditions are 16 mM Yb3+/0.4 mM Er3+ at 120°C for 20 h for Pha-UCNPs, and 80 mM Yb3+/0.1 mM Tm3+ at 180°C for 20 h for Res-UCNPs. The nanoparticles have a hexagonal phase or cubic phase with an average diameter size of 220 nm, and selectively emit the stronger red (670 nm) or violet (380 nm) fluorescence. Pha-UCNPs show the strong effects, and the maximum yield of singlet oxygen was seven times more than UCNPs and pheophorbide A alone under 980 nm illumination. It is attributed to the efficient resonance energy transfer from UCNPs to pheophorbide A. Pha-UCNPs is an effective NIR photosensitizer with potential for deep tissue disease photodynamic therapy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer

Peng Wang, Feng Qin, Zhiguo Zhang, and Wenwu Cao
Opt. Express 23(18) 22991-23003 (2015)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Towards pure near-infrared to near-infrared upconversion of multifunctional GdF3:Yb3+,Tm3+ nanoparticles

Hon-Tung Wong, Helen Lai Wa Chan, and Jianhua Hao
Opt. Express 18(6) 6123-6130 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
    [Crossref] [PubMed]
  2. M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
    [Crossref] [PubMed]
  3. A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
    [Crossref] [PubMed]
  4. S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
    [Crossref] [PubMed]
  5. C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
    [Crossref] [PubMed]
  6. B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
    [Crossref] [PubMed]
  7. H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
    [Crossref]
  8. X. Huang, “Giant enhancement of upconversion emission in NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+ core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
    [Crossref] [PubMed]
  9. F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
    [Crossref]
  10. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [Crossref] [PubMed]
  11. Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
    [Crossref]
  12. G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
    [Crossref]
  13. X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
    [Crossref] [PubMed]
  14. Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
    [Crossref]
  15. X. Y. Huang, “Tuning size and upconversion luminescence of NaYbF4:Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping,” Opt. Mater. Express 6(7), 2165–2176 (2016).
    [Crossref]
  16. X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
    [Crossref]
  17. J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
    [Crossref] [PubMed]
  18. M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
    [Crossref] [PubMed]
  19. M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
    [PubMed]
  20. M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
    [Crossref] [PubMed]
  21. Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
    [Crossref] [PubMed]
  22. A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
    [PubMed]
  23. H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
    [Crossref] [PubMed]
  24. Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
    [Crossref] [PubMed]
  25. Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
    [Crossref] [PubMed]
  26. M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
    [Crossref]
  27. S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
    [Crossref]
  28. D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
    [Crossref] [PubMed]
  29. A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
    [Crossref] [PubMed]
  30. U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
    [Crossref] [PubMed]
  31. Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
    [Crossref] [PubMed]
  32. Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
    [Crossref]
  33. S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
    [Crossref] [PubMed]
  34. O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
    [Crossref] [PubMed]
  35. X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
    [Crossref]
  36. X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
    [Crossref]
  37. H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
    [Crossref]
  38. T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
    [Crossref]
  39. J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
    [Crossref] [PubMed]
  40. X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaYF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
    [Crossref] [PubMed]
  41. F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
    [Crossref]

2017 (1)

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

2016 (2)

2015 (7)

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

X. Huang, “Giant enhancement of upconversion emission in NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+ core/shell nanoparticles excited at 808 nm,” Opt. Lett. 40(15), 3599–3602 (2015).
[Crossref] [PubMed]

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

X. Huang, “Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaYF3:Yb3+/Tm3+ nanoparticles through lanthanide doping,” Opt. Lett. 40(22), 5231–5234 (2015).
[Crossref] [PubMed]

2014 (7)

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

2013 (2)

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

2012 (3)

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

2011 (5)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

2010 (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

2009 (1)

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

2008 (2)

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

2007 (2)

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

2006 (4)

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

2005 (1)

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

2003 (2)

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

1991 (1)

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Abrahamse, H.

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Achilefuc, S.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Allakhverdiev, S. I.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Aparicio-Fabre, R.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Bai, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Buga, A. M.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Cao, W.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Castiglioni, B.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Chang, E.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Chatterjee, D. K.

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Chen, B.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Chen, H.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Chen, Q.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Chen, X.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Chen, Z.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Cheng, J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Cheng, L.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Cheng, S. H.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Chi, X.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Chow, M.

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Cremonesi, P.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Cui, S.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Dai, Q.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Dai, S.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Darbandi, M.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Davies, M. J.

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

Dong, B.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Ehlert, O.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Encarnación-Guevara, S.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Ezoulin, M. J.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Fan, L.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Fan, X.

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

Fang, F.

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Fuentes, S. I.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Girard, L.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Gu, Y. J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Güdel, H. U.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Guillén, G.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Haase, M.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Hamblin, M. R.

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Hao, X.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Hasan, T.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

He, W.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Heer, S.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Hernández, G.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Hoopes, P. J.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Hou, W.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Hu, L.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Huang, K.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Huang, M.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Huang, X.

Huang, X. Y.

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

X. Y. Huang, “Tuning size and upconversion luminescence of NaYbF4:Er3+/Tm3+ nanoparticles through Y3+ or Gd3+ doping,” Opt. Mater. Express 6(7), 2165–2176 (2016).
[Crossref]

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

Idris, N. M.

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

Iñiguez, L. P.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Jeong, P. H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Jiang, Z.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Jiao, Y.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Jin, J.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Kim, Y. C.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Ko, H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Lee, V. H.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Lehmann, O.

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Lei, Y.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Li, F.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Li, X.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Li, Z.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Liang, Y. R.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Lin, J.

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

Liu, J. L.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Liu, Z.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Lu, J.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Lu, J. L.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Lu, S.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Lucky, S. S.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Luo, X.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Ma, E.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Mai, H. X.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Man, C. W.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Mi, C. C.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Mitran, S.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Muhammad Idris, N.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Murata, N.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Murowchick, J. B.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Musazzi, U. M.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Nann, T.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Nishiyama, Y.

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Pan, G.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Pang, T.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Panzeri, D.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Pogue, B. W.

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Popa-Wagner, A.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Qian, Z.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Ramírez, M.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Ren, J.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Ren, X.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Shi, M.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Sivanesan, S.

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Song, H.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Soo, K. C.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Sparvoli, F.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Stella, A.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Strozzi, F.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Sun, H.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Sun, L. D.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Tan, W. B.

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

Tao, H.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Tarr, M.

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Thomann, R.

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Tian, J.

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

Tu, D.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Valenzeno, D. P.

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

Wang, C.

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Wang, H.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Wang, M.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Wang, R.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Wang, T.

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Wei, Y.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Wen, L.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Wong, W. T.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Wu, B.

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Wu, X. L.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Xing, D.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Xing, H.

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Xing, M.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Xu, S.

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Xu, S. K.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Xu, Z.

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

Yan, C. H.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Yang, S.

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

Yang, X.

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Yang, Y.

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Ye, J. H.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Ye, Y.

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

Yi, G. S.

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Yong, Z.

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

Yoon, H. E.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Yoon, J. H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

You, H.

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Youan, B. B.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Youm, I.

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Zamorano-Sánchez, D.

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Zhang, F.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Zhang, L.

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

Zhang, Y.

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Zhang, Y. W.

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

Zhang, Y. X.

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

Zhao, D.

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Zheng, W.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Zheng, X. Q.

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Zhou, A.

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Zhou, S.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Zhu, H.

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

ACS Nano (3)

S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9(1), 191–205 (2015).
[Crossref] [PubMed]

J. Jin, Y. J. Gu, C. W. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V. H. Lee, S. H. Cheng, and W. T. Wong, “Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging,” ACS Nano 5(10), 7838–7847 (2011).
[Crossref] [PubMed]

O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system,” ACS Nano 2(1), 120–124 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

G. S. Yi and M. Chow, “Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient upconversion fluorescence,” Adv. Funct. Mater. 16(18), 2324–2329 (2006).
[Crossref]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Heer, O. Lehmann, M. Haase, and H. U. Güdel, “Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution,” Angew. Chem. Int. Ed. Engl. 42(27), 3179–3182 (2003).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun. 305(3), 761–770 (2003).
[Crossref] [PubMed]

Biochem. J. (1)

H. Abrahamse and M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473(4), 347–364 (2016).
[Crossref] [PubMed]

Biomaterials (1)

C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32(26), 6145–6154 (2011).
[Crossref] [PubMed]

Bioorg. Med. Chem. (1)

H. You, H. E. Yoon, P. H. Jeong, H. Ko, J. H. Yoon, and Y. C. Kim, “Pheophorbide-a conjugates with cancer-targeting moieties for targeted photodynamic cancer therapy,” Bioorg. Med. Chem. 23(7), 1453–1462 (2015).
[Crossref] [PubMed]

Colloids Surf. B Biointerfaces (1)

U. M. Musazzi, I. Youm, J. B. Murowchick, M. J. Ezoulin, and B. B. Youan, “Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells,” Colloids Surf. B Biointerfaces 118(6), 234–242 (2014).
[Crossref] [PubMed]

Crit. Rev. Eukaryot. Gene Expr. (1)

B. Chen, B. W. Pogue, P. J. Hoopes, and T. Hasan, “Vascular and cellular targeting for photodynamic therapy,” Crit. Rev. Eukaryot. Gene Expr. 16(4), 279–305 (2006).
[Crossref] [PubMed]

Food Chem. (1)

Y. Zhao, M. Shi, J. H. Ye, X. Q. Zheng, J. L. Lu, and Y. R. Liang, “Photo-induced chemical reaction of trans-resveratrol,” Food Chem. 171, 137–143 (2015).
[Crossref] [PubMed]

Int. J. Nanomedicine (2)

Y. Ye, H. Xing, and Y. Li, “Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects,” Int. J. Nanomedicine 9(6), 4475–4484 (2014).
[Crossref] [PubMed]

Y. Ye, Y. Li, and F. Fang, “Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light,” Int. J. Nanomedicine 9(1), 5157–5165 (2014).
[Crossref] [PubMed]

J. Alloys Compd. (2)

X. Y. Huang, “Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design,” J. Alloys Compd. 690, 356–359 (2017).
[Crossref]

M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/Polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485(1-2), L24–L27 (2009).
[Crossref]

J. Biomed. Nanotechnol. (1)

A. Zhou, Y. Wei, Q. Chen, and D. Xing, “In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles,” J. Biomed. Nanotechnol. 11(11), 2003–2010 (2015).
[Crossref] [PubMed]

J. Lumin. (1)

Y. Chen, W. He, H. Wang, X. Hao, Y. Jiao, J. Lu, and S. Yang, “Effects of the reaction time and size on the up conversion luminescence of NaYF4:Yb(20%), Er(1%) microcrystals,” J. Lumin. 132(9), 2404–2408 (2012).
[Crossref]

J. Mater. Chem. (1)

S. Cui, H. Chen, H. Zhu, J. Tian, X. Chi, Z. Qian, and S. Achilefuc, “Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light,” J. Mater. Chem. 22(11), 4861–4873 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Y. Huang and J. Lin, “Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(29), 7652–7657 (2015).
[Crossref]

J. Mol. Cell. Cardiol. (1)

M. Tarr and D. P. Valenzeno, “Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen,” J. Mol. Cell. Cardiol. 23(5), 639–649 (1991).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

J. Zhang, L. Zhang, J. Ren, L. Zhang, and S. Lu, “Ultraviolet-enhanced upconversion emission mechanism of Tm3+ in YF3:Yb3+, Tm3+ nanocrystals,” J. Nanosci. Nanotechnol. 14(5), 3584–3587 (2014).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals,” J. Phys. Chem. C 111(37), 13721–13729 (2007).
[Crossref]

X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, and L. Fan, “Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects,” J. Phys. Chem. C 38(2), 13611–13617 (2007).
[Crossref]

Mater. Res. Bull. (1)

H. Sun, S. Dai, S. Xu, L. Wen, L. Hu, and Z. Jiang, “Infrared-to-visible upconversion flurescence of Er3+/Yb3+ -codoped bismuthate glasses,” Mater. Res. Bull. 40(3), 453–458 (2005).
[Crossref]

Mikrochim. Acta (1)

Y. Yang, “Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays,” Mikrochim. Acta 181(3), 263–294 (2014).
[Crossref]

Mol. Pharm. (1)

A. Zhou, Y. Wei, B. Wu, Q. Chen, and D. Xing, “Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy,” Mol. Pharm. 9(6), 1580–1589 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

X. Li, R. Wang, F. Zhang, and D. Zhao, “Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency,” Nano Lett. 14(6), 3634–3639 (2014).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

D. K. Chatterjee and Z. Yong, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine (Lond.) 3(1), 73–82 (2008).
[Crossref] [PubMed]

Nanoscale (1)

M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, “Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy,” Nanoscale 6(14), 8274–8282 (2014).
[Crossref] [PubMed]

Nanotechnology (2)

F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labeling,” Nanotechnology 17(1), R1–R13 (2006).
[Crossref]

F. Wang, D. K. Chatterjee, Z. Li, Y. Zhang, X. Fan, and M. Wang, “Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence,” Nanotechnology 17(23), 5786–5791 (2006).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

T. Pang, W. Cao, M. Xing, X. Luo, and X. Yang, “Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals,” Opt. Mater. 33(3), 485–489 (2011).
[Crossref]

Opt. Mater. Express (1)

Oxid. Med. Cell. Longev. (1)

A. Popa-Wagner, S. Mitran, S. Sivanesan, E. Chang, and A. M. Buga, “ROS and brain diseases: the good, the bad, and the ugly,” Oxid. Med. Cell. Longev. 2013(5), 963520 (2013).
[PubMed]

Photodiagn. Photodyna. (1)

Y. Zhang and N. M. Idris, “Enhanced photodynamic therapy using NIR-to-visible upconversion fluorescent nanoparticles,” Photodiagn. Photodyna. 8(2), 158 (2011).
[Crossref]

Physiol. Plant. (2)

M. Ramírez, G. Guillén, S. I. Fuentes, L. P. Iñiguez, R. Aparicio-Fabre, D. Zamorano-Sánchez, S. Encarnación-Guevara, D. Panzeri, B. Castiglioni, P. Cremonesi, F. Strozzi, A. Stella, L. Girard, F. Sparvoli, and G. Hernández, “Transcript profiling of common bean nodules subjected to oxidative stress,” Physiol. Plant. 149(3), 389–407 (2013).
[PubMed]

Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II,” Physiol. Plant. 142(1), 35–46 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Matching of emission spectra of UCNPs with absorption spectra of pheophorbide A (Pha, a) and resveratrol (Res, b).
Fig. 2
Fig. 2 Fluorescence emission spectra of pheophorbide A and resveratrol excited at 419 nm and 293 nm respectively.
Fig. 3
Fig. 3 Emission fluorescence spectra of Pha-UCNPs with different concentration of Yb3+ (a) and Er3+ (b), reactive temperature (c) and time (d).
Fig. 4
Fig. 4 Fluorescence emission spectra of Res-UCNPs with different concentration of Yb3+ (a) and Tm3+ (b) at different temperature (c) and reactive time (d).
Fig. 5
Fig. 5 X-ray powder diffraction pattern (XRD) of Ps-UCNPs: (a) Pha-UCNPs, (b) Res-UCNPs, (c) β-NaYF4, (d) α-NaYF4.
Fig. 6
Fig. 6 Scanning electron micrograph of the UCNPs and Ps-UCNPs at 20,000 × amplification.
Fig. 7
Fig. 7 Comparison of singlet oxygen production among Ps-UCNPs (a) and Pha-UCNPs under 980 nm illumination at different time (b). Data were presented as mean ± standard deviation in 3 repetitions. There was significant difference (p<0.01) between Pha-UCNPs and Res-UCNPs, and between Pha-UCNPs and UCNPs or pheophorbide A.
Fig. 8
Fig. 8 Upconversion emission spectra and photographs ofNaYF4:Yb3+/Er3+ (a) and NaYF4:Yb3+/Tm3+ (b) with the 980 nm laser as excitation light source in the left (A). Schematic energy level diagram showing the upconversion mechanism of the Yb3+, Er3+/Tm3+ co-doped nanoparticles in the right (B).

Metrics