Abstract

We design a simple and versatile strategy to synthesize pure Cu2O@CuO nanoporous materials with pores the size of 4~8 nm based on the laser irradiation of CuO powders in distilled water. In the presence of 1.8 mg Cu2O@CuO nanocomposites, the adsorption of a nearly 99.69% MB solution (80 mg/L, 3 mL) can be achieved after 1 min, while 95.35% via 200 mg original CuO powders. The porous structures and the abundant hydroxyl (-OH) groups formed on the surfaces enable the Cu2O@CuO nanocomposites to have many more adsorption sites. Our results have opened up a novel green paradigm of wielding laser light as a versatile tool for sculpting porous nanocomposites without any residual reagents.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal

Hua Zhang, Ming Chen, Dameng Wang, Linlin Xu, and Xiangdong Liu
Opt. Mater. Express 6(8) 2573-2583 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
    [Crossref] [PubMed]
  2. S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
    [Crossref] [PubMed]
  3. H. Zhang, M. Chen, D. M. Wang, L. L. Xu, and X. D. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
    [Crossref]
  4. L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
    [Crossref] [PubMed]
  5. Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
    [Crossref] [PubMed]
  6. M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
    [Crossref] [PubMed]
  7. K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
    [Crossref] [PubMed]
  8. W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
    [Crossref]
  9. Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
    [Crossref] [PubMed]
  10. A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
    [Crossref]
  11. D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
    [Crossref]
  12. H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
    [Crossref]
  13. Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
    [Crossref]
  14. G. W. Yang, “Laser ablation in liquids: application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
    [Crossref]
  15. L. Feng, M. Chen, F. Zheng, M. S. Niu, X. H. Zhang, and X. T. Hao, “Efficient photoinduced charge transfer in chemically-linked organic-metal Ag-P3HT nanocomposites,” Opt. Mater. Express 6(10), 3063–3074 (2016).
    [Crossref]
  16. D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
    [Crossref]
  17. T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
    [Crossref]
  18. U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
    [Crossref] [PubMed]
  19. J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
    [Crossref]
  20. C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
    [Crossref] [PubMed]
  21. W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
    [Crossref]
  22. S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
    [Crossref]
  23. M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
    [Crossref] [PubMed]

2016 (7)

H. Zhang, M. Chen, D. M. Wang, L. L. Xu, and X. D. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
[Crossref]

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

L. Feng, M. Chen, F. Zheng, M. S. Niu, X. H. Zhang, and X. T. Hao, “Efficient photoinduced charge transfer in chemically-linked organic-metal Ag-P3HT nanocomposites,” Opt. Mater. Express 6(10), 3063–3074 (2016).
[Crossref]

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

2015 (2)

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

2013 (1)

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

2012 (3)

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

2009 (1)

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

2008 (1)

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

2007 (1)

G. W. Yang, “Laser ablation in liquids: application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

2006 (1)

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

2005 (2)

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

2001 (1)

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Abdolvand, A.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Akter, T.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Berber, S.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Brown, N. M. D.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Cai, W. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Cao, H. Q.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Chen, C. Y.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Chen, J.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Chen, M.

Chen, Q.

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

Crouse, P.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Deng, Y.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Dettlaff-Weglikowska, U.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Du, X. W.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Feng, L.

Feng, M.

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

Fu, F.

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Ghorai, S.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Graupner, R.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Guo, L.

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Gusain, R.

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

Haddon, R. C.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Hao, X. T.

He, J. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Huang, C. P.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Jaroniec, M.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Jhang, S. H.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Juan, J. C.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Kalagara, S.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Khan, S. Z.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Khatri, O. P.

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

Kim, B. H.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Kim, K. H.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Kim, S. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Kulinich, S. A.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Kumari, S.

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

Kwon, E.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Lai, C. W.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Laughlin, J. M.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Lee, H. J.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Lee, J. G.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Lee, K. M.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Lee, W. H.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Lee, W. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Ley, L.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Li, L.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Li, L. H.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

Li, L. J.

Li, Z.

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

Lin, Z. Y.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

Liu, P.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

Liu, Q.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Liu, X. D.

Liu, Z.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Lu, C.

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

Ma, C.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Massey, A. T.

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

Murphy, H.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Ngai, K. S.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Niu, M. S.

Okpalugo, T. I. T.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Pal, S.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Panda, A. B.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Papakonstantinou, P.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Park, Y. W.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Raoufi, M.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Reddy, P. A. K.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Reddy, P. V. L.

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Reucroft, P. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Roth, S.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Sarkar, A.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Schmidt, M.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Schönherr, H.

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Sharp, M.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Shen, H.

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Singh, S. C.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Skákalová, V.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Song, X. L.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Tománek, D.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Tseng, C. H.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Wang, C.

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Wang, C. C.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Wang, D.

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Wang, D. M.

Wang, W.

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

Watkins, K. G.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Watt, A. A. R.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Wu, Q. Z.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Wu, Z.

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

Xiang, J. H.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Xiang, Q.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Xiao, J.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

Xie, Y.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Xu, H.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Xu, L. L.

Xu, Q. J.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Yan, B.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Yan, J. H.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

Yang, G. W.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

G. W. Yang, “Laser ablation in liquids: application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Yang, S. K.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Yao, Q.

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

Yao, W. F.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

You, W.

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

Yu, J.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Yuan, Y. D.

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

Zeng, H.

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

Zeng, H. B.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Zhan, H.

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

Zhang, B.

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

Zhang, H.

Zhang, M.

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

Zhang, S. C.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Zhang, X. H.

Zhang, X. R.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Zheng, F.

ACS Appl. Mater. Interfaces (4)

S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr, and S. Pal, “Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica,” ACS Appl. Mater. Interfaces 6(7), 4766–4777 (2014).
[Crossref] [PubMed]

Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, and H. Zeng, “Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal,” ACS Appl. Mater. Interfaces 6(11), 8845–8852 (2014).
[Crossref] [PubMed]

M. Feng, W. You, Z. Wu, Q. Chen, and H. Zhan, “Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate,” ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013).
[Crossref] [PubMed]

M. Zhang, Q. Yao, C. Lu, Z. Li, and W. Wang, “Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye,” ACS Appl. Mater. Interfaces 6(22), 20225–20233 (2014).
[Crossref] [PubMed]

ACS Omega (1)

D. Wang, H. Shen, L. Guo, C. Wang, and F. Fu, “Porous BiOBr/Bi2MoO6 heterostructures for highly selective adsorption of methylene blue,” ACS Omega 1(4), 566–577 (2016).
[Crossref]

Adv. Funct. Mater. (1)

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Appl. Surf. Sci. (1)

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1), 121–127 (2001).
[Crossref]

Carbon (1)

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Chem. Soc. Rev. (1)

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Environ. Int. (1)

P. A. K. Reddy, P. V. L. Reddy, E. Kwon, K. H. Kim, T. Akter, and S. Kalagara, “Recent advances in photocatalytic treatment of pollutants in aqueous media,” Environ. Int. 91, 94–103 (2016).
[Crossref] [PubMed]

Ind. Eng. Chem. Res. (1)

A. T. Massey, R. Gusain, S. Kumari, and O. P. Khatri, “Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes,” Ind. Eng. Chem. Res. 55(26), 7124–7131 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

J. Mater. Chem. (1)

W. F. Yao, B. Zhang, C. P. Huang, C. Ma, X. L. Song, and Q. J. Xu, “Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions,” J. Mater. Chem. 22(9), 4050–4055 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649–7658 (2015).
[Crossref]

J. Nanopart. Res. (1)

S. Z. Khan, Y. D. Yuan, A. Abdolvand, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp, and K. G. Watkins, “Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid,” J. Nanopart. Res. 11(6), 1421–1427 (2009).
[Crossref]

J. Phys. Chem. C (1)

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Nanotechnology (1)

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Sci. Rep. (1)

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028 (2015).
[Crossref] [PubMed]

Water Res. (1)

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,” Water Res. 88, 428–448 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a-b) The representative low-magnification and enlarged SEM images of the original CuO powders. The inset shows the EDS result. (c) The typical SEM image of the final products after laser irradiation of CuO powders for 60 min. The inset shows the EDS result. (d) The XRD patterns of the products and the original CuO powders.
Fig. 2
Fig. 2 (a) The typical low-magnification TEM image of the products obtained by laser irradiation of CuO powder for 60min. (c-d) The corresponding enlarged TEM images of the obtained hybrid Cu2O@CuO nanocomposites.
Fig. 3
Fig. 3 XPS spectra of the porous hybrid products. (a) Survey structure (b) Cu2p3/2 of the nanocomposites.
Fig. 4
Fig. 4 The reduction performance of the removal of MB molecules from the water solution (80mg/L, 3mL). (a-b) In the presence of 4mg original CuO powders and Cu2O@CuO nanocomposites obtained by 30 min laser irradiation, respectively. (c) With 200mg original CuO powders. (d) In the presence of porous Cu2O@CuO nanocomposites.
Fig. 5
Fig. 5 (a)The FTIR spectrums of the original CuO powders, products obtained by 30min and 60 min laser irradiation. (b) The FTIR spectrum of the absorbent by 60 min laser irradiation after adsorbing MB molecules.

Metrics