Abstract

Using the room-temperature-bonding technique, we have succeeded in fabricating a quasi-phase matching stack of thirty 106 µm-thick and 5.5 × 5.0 mm-aperture GaAs plates for high-power second-harmonic generation of CO2 lasers with the wavelength of 10.6 µm. Although its transmittance was lower than that of a single GaAs plate because of inclusion of small particles in the bonded interface, newly fabricated twenty stacked GaAs plates with the improved process show nearly the same transmittance with that of a single plate.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal

E. Lallier, M. Brevignon, and J. Lehoux
Opt. Lett. 23(19) 1511-1513 (1998)

Fabrication and characterization of Teflon-bonded periodic GaAs structures for THz generation

Sarah E. Trubnick, Sergei Ya. Tochitsky, and Chandrashekhar Joshi
Opt. Express 17(4) 2385-2391 (2009)

Quasi phase matching in GaAs–AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing

A. Saher Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh
Opt. Lett. 25(18) 1370-1372 (2000)

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  2. I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
    [Crossref]
  3. S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
    [Crossref]
  4. C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
    [Crossref]
  5. L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
    [Crossref]
  6. E. Lallier, M. Brevignon, and J. Lehoux, “Efficient second-harmonic generation of a CO2 laser with a quasi-phase-matched GaAs crystal,” Opt. Lett. 23(19), 1511–1513 (1998).
    [Crossref] [PubMed]
  7. M Kawaji, K Imura, T Yaguchi, and I Shoji, “Fabrication of quasi-phase-matched devices by use of the room-temperature-bonding technique” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB24.
  8. K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
    [Crossref]
  9. A. Held, “CO Lasers from Lab to Fab,” Laser Tech. J. 13(3), 15–17 (2016).
    [Crossref]
  10. T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
    [Crossref]
  11. A. N. Pikhtin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures,” Sov. Phys. Semicond. 12, 622–626 (1978).

2016 (1)

A. Held, “CO Lasers from Lab to Fab,” Laser Tech. J. 13(3), 15–17 (2016).
[Crossref]

2012 (1)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

2002 (1)

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
[Crossref]

1999 (2)

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

1998 (1)

1997 (1)

1993 (1)

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

1992 (1)

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

1978 (1)

A. N. Pikhtin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures,” Sov. Phys. Semicond. 12, 622–626 (1978).

Brevignon, M.

Byer, R. L.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Ebert, C. B.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Ebihara, M.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Eckardt, R. C.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Elssner, G.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Eyres, L. A.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Feigelson, R. S.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Fejer, M. M.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Gibbesch, B.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Gordon, L. A.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Hara, K.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Harris, J. S.

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

Held, A.

A. Held, “CO Lasers from Lab to Fab,” Laser Tech. J. 13(3), 15–17 (2016).
[Crossref]

Ichinose, H.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Ishiwada, T.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Ito, R.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

Kitamoto, A.

Koh, S.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Kondo, T.

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

Lallier, E.

Lehoux, J.

Matsumoto, S.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Nagashima, W.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Onda, T.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Pikhtin, A. N.

A. N. Pikhtin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures,” Sov. Phys. Semicond. 12, 622–626 (1978).

Route, R. K.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Sawada, H.

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Shirane, M.

Shoji, I.

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
[Crossref]

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
[Crossref]

Suga, T.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Takagi, H.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Takahashi, Y.

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Woods, G. L.

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

Yas’kov, A. D.

A. N. Pikhtin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures,” Sov. Phys. Semicond. 12, 622–626 (1978).

Acta Metall. Mater. (1)

T. Suga, Y. Takahashi, H. Takagi, B. Gibbesch, and G. Elssner, “Structure of Al-Al and Al-Si3N4 interfaces bonded at room temperature by means of the surface activation method,” Acta Metall. Mater. 40, S133–S137 (1992).
[Crossref]

Appl. Phys. Express (1)

K. Hara, S. Matsumoto, T. Onda, W. Nagashima, and I. Shoji, “Efficient ultraviolet second-harmonic generation from a walk-off-compensating β-BaB2O4 device with a new structure fabricated by room-temperature bonding,” Appl. Phys. Express 5(5), 052201 (2012).
[Crossref]

Electron. Lett. (1)

L. A. Gordon, G. L. Woods, R. C. Eckardt, R. K. Route, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29(22), 1942 (1993).
[Crossref]

J. Cryst. Growth (1)

C. B. Ebert, L. A. Eyres, M. M. Fejer, and J. S. Harris., “MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy,” J. Cryst. Growth 201–202, 187–193 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S. Koh, T. Kondo, M. Ebihara, T. Ishiwada, H. Sawada, H. Ichinose, I. Shoji, and R. Ito, “GaAs/Ge/GaAs sublattice reversal epitaxy on GaAs (100) and (111) substrates for nonlinear optical devices,” Jpn. J. Appl. Phys. 38(2), L508–L511 (1999).
[Crossref]

Laser Tech. J. (1)

A. Held, “CO Lasers from Lab to Fab,” Laser Tech. J. 13(3), 15–17 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

I. Shoji, T. Kondo, and R. Ito, “Second-order nonlinear susceptibilities of various dielectric and semiconductor materials,” Opt. Quantum Electron. 34(8), 797–833 (2002).
[Crossref]

Sov. Phys. Semicond. (1)

A. N. Pikhtin and A. D. Yas’kov, “Dispersion of the refractive index of semiconductors with diamond and zinc-blende structures,” Sov. Phys. Semicond. 12, 622–626 (1978).

Other (1)

M Kawaji, K Imura, T Yaguchi, and I Shoji, “Fabrication of quasi-phase-matched devices by use of the room-temperature-bonding technique” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Room-temperature-bonding process.
Fig. 2
Fig. 2 (a) The instrument for room-temperature bonding and (b) the translation stage in the instrument which successively supplies plates to be bonded.
Fig. 3
Fig. 3 Fabrication process.
Fig. 4
Fig. 4 Fabricated 30 plate-stacked QPM GaAs.
Fig. 5
Fig. 5 Transmission spectra of a single GaAs plate (red line), the 20 stacked GaAs plates fabricated with the previous successive bonding process (green line), and that with the one-by-one bonding process (blue line).
Fig. 6
Fig. 6 (a) Surface profile of the top GaAs plate of the 20-plate stack fabricated with the previous successive bonding process. Inclusion of small particles at the bonded interface (surrounded with dashed circles) are observed, the profile of which along the arrow line is shown in (b). gap, the height of which is estimated to be as large as around 30 μm from the oscillation period in this case.
Fig. 7
Fig. 7 Surface profile of the top GaAs plate of the 9-plate stack fabricated with the improved successive bonding process.
Fig. 8
Fig. 8 Transmission spectra of a single GaAs plate (red line), 10 stacked GaAs plates fabricated with the previous successive bonding process (green line), and the 9 stacked GaAs plates with the improved successive bonding process (blue line).
Fig. 9
Fig. 9 Second-harmonic power as a function of the fundamental power for the 9 stacked QPM-GaAs plates fabricated with the improved process (circles) and the 10 stacked plates with the previous process (squares).

Metrics