Abstract

We accurately measure the electro-optic (EO) coefficients of undoped and 1.7 mol% MgO-doped stoichiometric LiNbO3 (SLN) using high-quality crystals and a reliable AC-field applying method. The EO coefficients at the wavelength of 633 nm are determined to be r33 = 30.2 ± 0.6 pm/V and r13 = 9.1 ± 0.2 pm/V for undoped SLN, and r33 = 29.8 ± 0.2 pm/V and r13 = 9.1 ± 0.04 pm/V for MgO-doped SLN. The obtained values are found to be nearly the same with those for congruent LiNbO3.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics

Yasunori Furukawa, Kenji Kitamura, Shunji Takekawa, Kazuo Niwa, and Hideki Hatano
Opt. Lett. 23(24) 1892-1894 (1998)

Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal

Yuye Wang, Longhuang Tang, Degang Xu, Chao Yan, Yixin He, Jia Shi, Dexian Yan, Hongxiang Liu, Meitong Nie, Jiachen Feng, and Jianquan Yao
Opt. Express 25(8) 8926-8936 (2017)

Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths

Flurin Juvalta, Mojca Jazbinsek, Peter Günter, and Kenji Kitamura
J. Opt. Soc. Am. B 23(2) 276-281 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
    [Crossref]
  2. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
    [Crossref]
  3. S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
    [Crossref]
  4. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
    [Crossref]
  5. T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
    [Crossref]
  6. J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
    [Crossref]
  7. S. Nuki, D. Gunji, and I. Shoji, “Accurate measurements of the refractive indices and their Sellmeier equations of Mg-doped and undoped stoichiometric LiNbO3 and LiTaO3,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4A.28.
    [Crossref]
  8. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  9. D. N. Nikogosyan, Properties of Optical and Laser-related Materials: A Handbook (John Wiley & Sons, 1997), Chap. 2.
  10. I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurements of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06 μm,” in Nonlinear Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

2005 (1)

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

1999 (1)

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

1998 (1)

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

1993 (1)

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

1992 (1)

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Cabrera, J. M.

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

Fujiwara, T.

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

Gabanes, A. G.

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

Ganesamoorthy, S.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Hayashi, T.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Ikushima, J.

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Iyi, N.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Kirnura, S.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Kitamura, K.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Kumaragurubaran, S.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Nakamura, M.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Nitanda, F.

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

Ohama, M.

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Sato, M.

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

Serrano, M. D.

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Takahashi, M.

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Takekawa, S.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Terabe, K.

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Toro, J. A. D.

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Yamamoto, J. K.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Appl. Phys. Lett. (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77(16), 2494–2496 (2000).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Electron. Lett. (1)

T. Fujiwara, M. Takahashi, M. Ohama, J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

J. Cryst. Growth (2)

Y. Furukawa, M. Sato, K. Kitamura, and F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128(1-4), 909–914 (1993).
[Crossref]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kirnura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 116(3-4), 327–332 (1992).
[Crossref]

Mater. Sci. Eng. B (1)

S. Ganesamoorthy, M. Nakamura, S. Takekawa, S. Kumaragurubaran, K. Terabe, and K. Kitamura, “A comparative study on the domain switching characteristics of near stoichiometric lithium niobate and lithium tantalate single crystals,” Mater. Sci. Eng. B 120(1-3), 125–129 (2005).
[Crossref]

Opt. Commun. (1)

J. A. D. Toro, M. D. Serrano, A. G. Gabanes, and J. M. Cabrera, “Accurate interferometric measurement of electrooptic coefficients: application to quasi-stoichiometric and LiNbO3,” Opt. Commun. 154, 23 (1998).
[Crossref]

Other (3)

S. Nuki, D. Gunji, and I. Shoji, “Accurate measurements of the refractive indices and their Sellmeier equations of Mg-doped and undoped stoichiometric LiNbO3 and LiTaO3,” in Nonlinear Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4A.28.
[Crossref]

D. N. Nikogosyan, Properties of Optical and Laser-related Materials: A Handbook (John Wiley & Sons, 1997), Chap. 2.

I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurements of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06 μm,” in Nonlinear Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Measurement system based on a Mach-Zehnder interferometer.
Fig. 2
Fig. 2 Dependence of the interference intensity on the mirror displacement.
Fig. 3
Fig. 3 Dependence of the fundamental and the second-harmonic components on mirror displacement for (a) r33 (undoped SLN) at Vm = 700 V and (b) r13 (undoped SLN) at Vm = 900 V.
Fig. 4
Fig. 4 Ratio of second-harmonic to fundamental components as a function of the applied voltage for undoped SLN and undoped CLN.
Fig. 5
Fig. 5 Dependence of the fundamental and the second-harmonic components on mirror displacement for (a) r33 (1.7% MgO-doped SLN) at Vm = 600 V and (b) r13 (1.7% MgO-doped SLN) at Vm = 700 V.
Fig. 6
Fig. 6 Ratio of second-harmonic to fundamental components as a function of the applied voltage.

Tables (3)

Tables Icon

Table 1 Previously reported EO coefficients of SLN and CLNa

Tables Icon

Table 2 Refractive indices of LN at 632.8 nm

Tables Icon

Table 3 EO coefficients at 632.8nm determined in this work (pm/V)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 + 2 I 1 I 2 Δϕ Δ δ 0 Δ δ 0 +Δϕ cos(Δ δ 0 + π V π V m sinΩt) dΔ δ 0
V π(33) = λ z s 2 y s(e) | ( n e 1) d 32 1 2 n e 3 r 33 | ,
V π(13) = λ z s 2 y s(o) | ( n o 1) d 32 1 2 n o 3 r 13 |
Δ I Ω =4 I 1 I 2 J 1 ( π V m V π ) sin( Δφ 2 ) Δφ 2 sin(Δ δ 0 + Δφ 2 )
Δ I 2Ω =4 I 1 I 2 J 2 ( π V m V π ) sin( Δφ 2 ) Δφ 2 cos(Δ δ 0 + Δφ 2 )
Δ I 2Ω,m Δ I Ω,m = J 2 ( π V m / V π ) J 1 ( π V m / V π )

Metrics