Abstract

The plasmon resonance properties of gold nanoparticles (AuNPs) in liquid ionic medium with different concentration was investigated using a UV-visible/NIR spectrophotometer. The optical absorption spectra of AuNPs suspended in NaCl solutions in the range of 400 – 800 nm were measured; specifically, 10 nm bare AuNPs separately suspended in NaCl solution with molar concentrations of 0.01M and 1M resulted in different shapes and widths in the plasmon resonance peak. The optical spectral resonances were analyzed using the Mie theory, Lorenz-Drude size-dependent dielectric functions and effective medium theory. Analysis of the spectral features by means of theoretical models showed that the damping of the plasmon resonance of AuNPs in ionic medium is size dependent. The experimental results indicated that the effect of chemical interface damping is more prominent compared with the inherent size effects of AuNPs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-color surface plasmon resonance nanosizer for gold nanoparticles

Quaid Zaman, Jefferson Souza, Omar Pandoli, Karlo Q. Costa, Victor Dmitriev, Daniele Fulvio, Marco Cremona, Ricardo Q. Aucelio, Giselle Fontes, and Tommaso Del Rosso
Opt. Express 27(3) 3200-3216 (2019)

Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

Rakesh Singh Moirangthem, Yia-Chung Chang, and Pei-Kuen Wei
Biomed. Opt. Express 2(9) 2569-2576 (2011)

Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions

Wenjun Zhou, David J. Mandia, Seán T. Barry, and Jacques Albert
Opt. Express 22(26) 31665-31676 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
    [Crossref] [PubMed]
  2. I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
    [Crossref]
  3. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
    [Crossref] [PubMed]
  4. A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
    [Crossref] [PubMed]
  5. R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
    [Crossref] [PubMed]
  6. W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Acc. Chem. Res. 44(10), 1094–1104 (2011).
    [Crossref] [PubMed]
  7. X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
    [Crossref]
  8. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref] [PubMed]
  9. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [Crossref] [PubMed]
  10. C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
    [Crossref] [PubMed]
  11. S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994).
    [Crossref]
  12. C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
    [Crossref] [PubMed]
  13. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
    [Crossref] [PubMed]
  14. K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
    [Crossref] [PubMed]
  15. I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
    [Crossref]
  16. P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31(16), 2474–2476 (2006).
    [Crossref] [PubMed]
  17. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [Crossref] [PubMed]
  18. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
    [Crossref] [PubMed]
  19. X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
    [Crossref] [PubMed]
  20. D. W. Thompson and I. R. Collins, “Electrical properties of the gold—aqueous solution interface,” J. Colloid Interface Sci. 152(1), 197–204 (1992).
    [Crossref]
  21. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
    [Crossref]
  22. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
    [Crossref] [PubMed]
  23. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (John Wiley & Sons, 2010).
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  26. G. Mie, “Beiträge zur optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  27. K. Kelly and E. Coronado, “Zhao LL and Schatz GC,” J. Phys. Chem. B 2003, 107 (2003).
  28. C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (World Scientific, 2012).
  29. U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” (1995).
    [Crossref]
  30. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  31. C. F. Bohren and D. R. Huffman, Absorption and scattering by a sphere (1983).
  32. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
    [Crossref]
  33. R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
    [Crossref]
  34. J. M. Garnett, “Colors in material glasses and metal films,” Trans Roy Soc 203(359-371), 385–420 (1904).
    [Crossref]
  35. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces (World Scientific, 2004).
  36. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer Science & Business Media, 2005).

2013 (2)

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

2012 (3)

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
[Crossref] [PubMed]

2011 (2)

W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Acc. Chem. Res. 44(10), 1094–1104 (2011).
[Crossref] [PubMed]

A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
[Crossref] [PubMed]

2010 (3)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

2008 (2)

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

2007 (3)

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

2006 (3)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31(16), 2474–2476 (2006).
[Crossref] [PubMed]

2003 (2)

K. Kelly and E. Coronado, “Zhao LL and Schatz GC,” J. Phys. Chem. B 2003, 107 (2003).

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

1998 (1)

1997 (1)

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

1994 (1)

S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

1993 (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

1992 (1)

D. W. Thompson and I. R. Collins, “Electrical properties of the gold—aqueous solution interface,” J. Colloid Interface Sci. 152(1), 197–204 (1992).
[Crossref]

1985 (1)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

1904 (1)

J. M. Garnett, “Colors in material glasses and metal films,” Trans Roy Soc 203(359-371), 385–420 (1904).
[Crossref]

Al-Jamal, W. T.

W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Acc. Chem. Res. 44(10), 1094–1104 (2011).
[Crossref] [PubMed]

Arvizo, R. R.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

Ashkarran, A. A.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Averitt, R.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Beddow, J.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Bhattacharya, R.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

Bhattacharyya, S.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

Blanes, M.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering by a sphere (1983).

Bosbach, J.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Charron, G.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Chau, L.-K.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

Chen, C.-D.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Cheng, S.-F.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Collins, I. R.

D. W. Thompson and I. R. Collins, “Electrical properties of the gold—aqueous solution interface,” J. Colloid Interface Sci. 152(1), 197–204 (1992).
[Crossref]

Coronado, E.

K. Kelly and E. Coronado, “Zhao LL and Schatz GC,” J. Phys. Chem. B 2003, 107 (2003).

de la Fuente, J. M.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

de Larramendi, I. R.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Del Pino, P.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Diaz, A.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Djurišic, A. B.

Elazar, J. M.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Fadeel, B.

A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
[Crossref] [PubMed]

Frenkel, A. I.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Fromm, K. M.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

García de Abajo, F. J.

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

Garcia-Bennett, A.

A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
[Crossref] [PubMed]

Garnett, J. M.

J. M. Garnett, “Colors in material glasses and metal films,” Trans Roy Soc 203(359-371), 385–420 (1904).
[Crossref]

Gedanken, A.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Genzel, L.

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

Giri, K.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Hajipour, M. J.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Halas, N.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Hao, F.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

Hendrich, C.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

Hubenthal, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering by a sphere (1983).

Jacobsen, V.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Jimenez de Aberasturi, D.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joyce, E.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Kelly, K.

K. Kelly and E. Coronado, “Zhao LL and Schatz GC,” J. Phys. Chem. B 2003, 107 (2003).

Khoo, I. C.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kostarelos, K.

W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Acc. Chem. Res. 44(10), 1094–1104 (2011).
[Crossref] [PubMed]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” (1995).
[Crossref]

Kubo, S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Kudgus, R. A.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Lee, S.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Liang, X. J.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Liu, J.

X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
[Crossref] [PubMed]

Liz-Marzan, L. M.

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

Mahmoudi, M.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Majewski, M. L.

Mallouk, T. E.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Mason, T. J.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Mayer, K. M.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Mayer, T. S.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Mollá, K.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Mukherjee, P.

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

Mukhopadhyay, D.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

Mulvaney, P.

S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Nees, M.

A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
[Crossref] [PubMed]

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Nordlander, P.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

Parak, W. J.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Pastoriza-Santos, I.

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

Patlolla, A.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Patra, C. R.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

Pelaz, B.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Perelshtein, I.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Perkas, N.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Pfeiffer, C.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Rakic, A. D.

Rojo, T.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Ruderman, E.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Sanchez-Iglesias, A.

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

Sandoghdar, V.

Sarkar, D.

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Serpooshan, V.

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Servos, M. R.

X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
[Crossref] [PubMed]

Stietz, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Stoller, P.

Tang, Y.

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Thompson, D. W.

D. W. Thompson and I. R. Collins, “Electrical properties of the gold—aqueous solution interface,” J. Colloid Interface Sci. 152(1), 197–204 (1992).
[Crossref]

Träger, F.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Tzanov, T.

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

Underwood, S.

S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Vartanyan, T.

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” (1995).
[Crossref]

Wang, C. R. C.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
[Crossref] [PubMed]

Zhao, Y.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Acc. Chem. Res. 44(10), 1094–1104 (2011).
[Crossref] [PubMed]

ACS Nano (1)

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2(4), 687–692 (2008).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Deliv. Rev. 62(3), 346–361 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

I. Pastoriza-Santos, A. Sanchez-Iglesias, F. J. García de Abajo, and L. M. Liz-Marzan, “Environmental optical sensitivity of gold nanodecahedra,” Adv. Funct. Mater. 17(9), 1443–1450 (2007).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Träger, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning,” Appl. Phys. B 76(8), 869–875 (2003).
[Crossref]

Biochem. Pharmacol. (1)

A. Garcia-Bennett, M. Nees, and B. Fadeel, “In search of the Holy Grail: Folate-targeted nanoparticles for cancer therapy,” Biochem. Pharmacol. 81(8), 976–984 (2011).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, “Sensing capability of the localized surface plasmon resonance of gold nanorods,” Biosens. Bioelectron. 22(6), 926–932 (2007).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

R. R. Arvizo, S. Bhattacharyya, R. A. Kudgus, K. Giri, R. Bhattacharya, and P. Mukherjee, “Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future,” Chem. Soc. Rev. 41(7), 2943–2970 (2012).
[Crossref] [PubMed]

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

X. Zhang, M. R. Servos, and J. Liu, “Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization,” J. Am. Chem. Soc. 134(24), 9910–9913 (2012).
[Crossref] [PubMed]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

D. W. Thompson and I. R. Collins, “Electrical properties of the gold—aqueous solution interface,” J. Colloid Interface Sci. 152(1), 197–204 (1992).
[Crossref]

J. Mater. Chem. B Mater. Biol. Med. (1)

I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel, and A. Gedanken, “Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity,” J. Mater. Chem. B Mater. Biol. Med. 1(14), 1968–1976 (2013).
[Crossref]

J. Phys. Chem. B (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

K. Kelly and E. Coronado, “Zhao LL and Schatz GC,” J. Phys. Chem. B 2003, 107 (2003).

Langmuir (2)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Nano Lett. (1)

S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett. 7(11), 3418–3423 (2007).
[Crossref] [PubMed]

Nanotechnology (1)

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, “A single molecule immunoassay by localized surface plasmon resonance,” Nanotechnology 21(25), 255503 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B Condens. Matter 48(24), 18178–18188 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au 2 S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
[Crossref]

Small (1)

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de la Fuente, X. J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse Nano-Bio interactions,” Small 9(9-10), 1573–1584 (2013).
[Crossref] [PubMed]

Surf. Sci. (1)

U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).
[Crossref]

Trans Roy Soc (1)

J. M. Garnett, “Colors in material glasses and metal films,” Trans Roy Soc 203(359-371), 385–420 (1904).
[Crossref]

Trends Biotechnol. (1)

M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, “Antibacterial properties of nanoparticles,” Trends Biotechnol. 30(10), 499–511 (2012).
[Crossref] [PubMed]

Other (7)

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces (World Scientific, 2004).

V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer Science & Business Media, 2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (John Wiley & Sons, 2010).

C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology (World Scientific, 2012).

U. Kreibig and M. Vollmer, “Optical properties of metal clusters,” (1995).
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and scattering by a sphere (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 TEM image (a), AuNPs size distribution (b) and DLS size distribution (c).
Fig. 2
Fig. 2 (a) Real part (n) and (b) imaginary part (k) of refractive indices of AuNPs in different size by Eq. (4); (c) Mie extinction spectra shows the effect of size depended dielectric function in water nm = 1.33
Fig. 3
Fig. 3 Calculated real and imaginary parts of the refractive index by using the effective medium theory and Eq. (5) for different concentration of salt. (a) real and (b) imaginary part for 0.01M NaCl; (c) real and (d) imaginary part of refractive index for 1M NaCl. The dips position for n and the maximum position of peak at n and k for variety of volume fraction of 0.01M NaCl and 1M NaCl are summarized in Table 1.
Fig. 4
Fig. 4 Experimental absorption in different volume fractions of 10 nm gold nanoparticles in 0.01M (a) and 1M (b) NaCl. In both figures the primary plasmon resonance of 10 nm gold are shown. The impact of CID on lowering and broadening of plasmon resonance clearly appear in experimental data. The hydrodynamic size (nm) of aggregated gold nanoparticles is shown inside the parenthesis.
Fig. 5
Fig. 5 The size distribution of 30% of 10nm gold by using the dynamic light scattering. (a) 0.01M NaCl (b) 1M NaCl
Fig. 6
Fig. 6 The hydrodynamic size of AuNPs versus Volume fraction of two salt concentration (0.01M and 1M NaCl solution).
Fig. 7
Fig. 7 Real and imaginary part of the refraction index calculated from experimental absorption spectra by Kramer Kroning simulation.
Fig. 8
Fig. 8 Comparison of red shift of real part (n) and imaginary part (k) of the refractive index for different volume fraction of 10 nm AuNPs in 1 M and 0.01 M NaCl solutions.

Tables (2)

Tables Icon

Table 1 The Dips at real epsilon and maximum peak of real and imaginary part of epsilon

Tables Icon

Table 2 The variation in volume fraction will be affect the plasmon resonance position

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε(ω,r)= ε bulk (ω) ε bulk free (ω)+ ε free (r)
ε bulk free =ε( ) ω p 2 /ω( ω+i γ bulk )
γ(r)= γ 0 +(A v F )/r
ε(ω,r)= ε bulk ( ω )+ ω p 2 ω 2 +iω Γ 0 ω p 2 ω 2 +iω( Γ 0 + A v F r )
ε eff = ε m ε( 1+2f )+2 ε m ( 1f ) ε(1f)+ ε m (2+f)

Metrics