Abstract

We report on the viscoelastic response of PMMA microstructured polymer optical fibers (mPOFs) when exposed to long periods of strain and relaxation, with the strain period ranging from 0.5 min to 50 min. The behavior of the fibers was monitored by inscribing a fiber Bragg grating (FBG) in them and tracking the reflection peak. We demonstrate that the fiber, when relaxing from strains of up to 0.9%, has a two-phase recovery: initially linear (elastic driven) and subsequently nonlinear (viscoelastic driven) contraction. The linear (elastic) relaxation wavelength range depends both on the strain level and on the strain duration. For short strain durations, this wavelength range stays the same, but with increasing strain duration, it decreases, which will influence the operation range of mPOF and POF-based FBG sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

Getinet Woyessa, Andrea Fasano, Christos Markos, Alessio Stefani, Henrik K. Rasmussen, and Ole Bang
Opt. Mater. Express 7(1) 286-295 (2017)

Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

Andrea Fasano, Getinet Woyessa, Pavol Stajanca, Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Katerina Krebber, and Ole Bang
Opt. Mater. Express 6(2) 649-659 (2016)

High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

Christos Markos, Alessio Stefani, Kristian Nielsen, Henrik K. Rasmussen, Wu Yuan, and Ole Bang
Opt. Express 21(4) 4758-4765 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  3. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  4. A. Cusano, D. Paladino, A. Cutolo, A. Iadicicco, and S. Campopiano, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2012).
  5. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009).
  6. M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre, 1st ed. (Springer, 2008).
  7. A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
    [Crossref]
  8. D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers,” Opt. Lett. 40(7), 1476–1479 (2015).
    [Crossref] [PubMed]
  9. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
    [Crossref]
  10. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
    [Crossref]
  11. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [Crossref] [PubMed]
  12. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  13. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  14. J. Capodagli and R. Lakes, “Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time-temperature superposition,” Rheol. Acta 47(7), 777–786 (2008).
    [Crossref]
  15. K. Krebber, S. Liehr, and J. Witt, “Smart technical textiles based on fibre optic sensors,” in OFS2012 22nd International Conference on Optical Fiber Sensors, Invited Paper, Y. Liao, W. Jin, D. D. Sampson, R. Yamauchi, Y. Chung, K. Nakamura, and Y. Rao, eds. (2012), Vol. 8421, p. 84212A–10.
    [Crossref]
  16. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  17. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
    [Crossref]
  18. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  19. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  20. A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
    [Crossref]
  21. A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
    [Crossref]
  22. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  23. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27(19), 1684–1686 (2002).
    [Crossref] [PubMed]
  24. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  25. D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
    [Crossref]
  26. W. Zhang and D. J. Webb, “Humidity responsivity of poly (methyl methacrylate) - based optical fiber Bragg grating sensors,” 39(10), 3026–3029 (2014).
  27. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  28. H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity (Springer US, 2015).
  29. A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
    [Crossref] [PubMed]

2016 (2)

2015 (4)

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers,” Opt. Lett. 40(7), 1476–1479 (2015).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (4)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

2011 (2)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

2008 (1)

J. Capodagli and R. Lakes, “Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time-temperature superposition,” Rheol. Acta 47(7), 777–786 (2008).
[Crossref]

2005 (1)

2004 (1)

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

2002 (1)

1999 (2)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

1997 (2)

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Abang, A.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

Argyros, A.

Askins, C. G.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Bang, O.

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers,” Opt. Lett. 40(7), 1476–1479 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Bilro, L.

Bundalo, I.-L.

Capodagli, J.

J. Capodagli and R. Lakes, “Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time-temperature superposition,” Rheol. Acta 47(7), 777–786 (2008).
[Crossref]

Chu, P. L.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Davis, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Dobb, H.

Fasano, A.

Friebele, E. J.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

Kalli, K.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[Crossref] [PubMed]

Kersey, A. D.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Koo, K. P.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koutsides, C.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Krebber, K.

Kuhlmey, B. T.

Lacraz, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Lakes, R.

J. Capodagli and R. Lakes, “Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time-temperature superposition,” Rheol. Acta 47(7), 777–786 (2008).
[Crossref]

Large, M. C. J.

LeBlanc, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Markos, C.

Martijn de Sterke, C.

McPhedran, R. C.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Nielsen, K.

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers,” Opt. Lett. 40(7), 1476–1479 (2015).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

Nogueira, R.

Oliveira, R.

Patrick, H. J.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peng, G. D.

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Polis, M.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Putnam, M.

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Rasmussen, H. K.

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Sáez-Rodríguez, D.

Stajanca, P.

Stefani, A.

A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, and O. Bang, “Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors,” Opt. Mater. Express 6(2), 649 (2016).
[Crossref]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Tam, H.

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

Tao, X.

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

Theodosiou, A.

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

van Eijkelenborg, M. A.

Webb, D. J.

Woyessa, G.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Yang, D. X.

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

Yu, J.

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

Yuan, W.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Zhang, W.

W. Zhang and D. J. Webb, “Humidity responsivity of poly (methyl methacrylate) - based optical fiber Bragg grating sensors,” 39(10), 3026–3029 (2014).

Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, “Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber,” IEEE Photonics Technol. Lett. 27(7), 693–696 (2015).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

IEEE Sens. J. (1)

A. Stefani, S. Andresen, W. Yuan, and O. Bang, “Dynamic characterization of polymer optical fibers,” IEEE Sens. J. 12(10), 3047–3053 (2012).
[Crossref]

J. Lightwave Technol. (2)

A. D. Kersey, M. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mater. Sci. Eng. A (1)

D. X. Yang, J. Yu, X. Tao, and H. Tam, “Structural and mechanical properties of polymeric optical fiber,” Mater. Sci. Eng. A 364(1–2), 256–259 (2004).
[Crossref]

Meas. Sci. Technol. (1)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

Opt. Commun. (1)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Photonics Technol. Lett. IEEE (1)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” Photonics Technol. Lett. IEEE 24(9), 763–765 (2012).
[Crossref]

Rheol. Acta (1)

J. Capodagli and R. Lakes, “Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: A test of time-temperature superposition,” Rheol. Acta 47(7), 777–786 (2008).
[Crossref]

Other (6)

K. Krebber, S. Liehr, and J. Witt, “Smart technical textiles based on fibre optic sensors,” in OFS2012 22nd International Conference on Optical Fiber Sensors, Invited Paper, Y. Liao, W. Jin, D. D. Sampson, R. Yamauchi, Y. Chung, K. Nakamura, and Y. Rao, eds. (2012), Vol. 8421, p. 84212A–10.
[Crossref]

A. Cusano, D. Paladino, A. Cutolo, A. Iadicicco, and S. Campopiano, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2012).

A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science, 2009).

M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre, 1st ed. (Springer, 2008).

H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity (Springer US, 2015).

W. Zhang and D. J. Webb, “Humidity responsivity of poly (methyl methacrylate) - based optical fiber Bragg grating sensors,” 39(10), 3026–3029 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup - the fiber has been strained with the help of a motorized stage (left). The fiber relaxation (recovery) was monitored through the reflected FBG peak. While the motorized stage moved consistently, due to the viscoelastic nature of polymer, the FBG peak had a time lag in relaxing to the initial position (right).
Fig. 2
Fig. 2 Schematic of a sequence of the experiment. The fiber is strained (here 0.4%) for the duration T1 and then relaxed for the duration T2. After a sequence of 10 repetitions of the strain-relax cycle, the fiber was left relaxing (recovering) for two hours to mitigate possible accumulated stress. The two main relaxation ranges are indicated in the right side of the figure: the linear (elastic-driven) fast relaxation range ΔλFAST, followed by the nonlinear (viscous-dominated) slow relaxation range ΔλSLOW. ΔλFAST is defined as the range where the fiber is following the (rapidly decreasing) strain applied by the motor. ΔλSLOW is defined as the range in which the fiber has a time-lag and does not follow the (rapidly decreasing) strain anymore; defined as when the speed of the FBG peak shift has become 20 times slower than the motor speed.
Fig. 3
Fig. 3 Strain-relaxation sequences for a strain level of 0.4%. Each window shows a sequence of 10 overlaid cycles as presented in Fig. 2. The strain time T1 in the five windows is 0.5, 2.5, 5, 10, and 50 min, respectively, while the relaxation time T2 was kept constant at 5 min. The point A (red X) marks the boundary between ΔλFAST and ΔλSLOW, with the inset image showing it more precisely. The point B (blue X) marks the point 30 seconds after the start of the relaxation. It is apparent that with increasing strain duration, the fiber takes longer time to relax. The linear range ΔλFAST is decreased by 0.3 nm when the strain duration is increased from 0.5 min (dashed green arrow) to 5 min (dashed red arrow), thereby reducing the ΔλFAST range by about 18%.
Fig. 4
Fig. 4 10 cycle strain-relaxation sequence for a strain of 0.9% and different durations of strain T1 (same marking as in Fig. 3). The wavelength range ΔλFAST is decreased by 0.5 nm when the strain duration is increased from 0.5 min (dashed green arrow) to 50 min (red arrow), thereby reducing the wavelength range of fast contraction ΔλFAST by about 13%.
Fig. 5
Fig. 5 FBG growth during the straining time for cycle 1 and 10 for all the different strain times.
Fig. 6
Fig. 6 Center FBG wavelength at point B, which is 30 seconds after the start of relaxation (see marks in Figs. 3- 4), versus the number of strain cycles in a 10-cycle sequence. The sequences with 0.4% strain are shown in (a), while the sequences with 0.9% strain are shown in (b). For each strain level we show 5 sequences with varying strain time T1.
Fig. 7
Fig. 7 Wavelength at point A versus strain time T1, for 0.4% strain (left), 0.65% strain (center) and 0.9% strain (right). The Y-axis is scaled to percentage of total strain for direct comparison. For both the first and the last, 10th, iteration (red and blue curves, respectively), after 50 mins ΔλFAST shrank to about 70% of the total strain, for each of the different strain levels. The values for the 10th strain cycle differ by less than 3% (of the total strain range) from the values for the first iteration.
Fig. 8
Fig. 8 A sequence of 10 strain-relax cycles where strain amounted to 1% and relax to 0.6%. The relaxation range ΔλFAST has been determined after straining the fiber for 1h at 1% and then completely relaxing to find the point A which was standing at 0.28% of the total strain. Afterwards, the fiber has been strained to 1% and relaxed to 0.6%, a value which was selected as it is sufficiently above measured point A. It appears that the FBG peak is following the motor movement very precisely without any time lag in response. A difference in the start of the rise for certain curves originates in counting error of the software running the strain motor, which sometimes adds a second on the 60 seconds count.

Tables (1)

Tables Icon

Table 1 Summary of ΔλFAST and ΔλSLOW for 0.4%, 0.65% and 0.9% strain for shortest and longest strain duration T1. The values are taken for the 10th cycle (red curves presented in Fig. 6). The brackets give the percentage of the total strain that the particular wavelength range corresponds to.

Metrics