Abstract

We propose a half wave plate in the terahertz region to realize broadband linear polarization conversion in the reflection mode through anisotropic metamaterials. The structure of this design is composed of two pairs of patches in one unit cell that can rotate the polarization direction of a linearly polarized incident wave for an angle of 2β in a broadband frequency range. This work concentrates mainly on numerical simulations by using the standard finite difference time domain method. The efficiency of the half wave plate is higher than 50%, and PCR is higher than 85% in a broadband frequency range for cross polarization conversion. In the operating frequency band, three polarization conversion peaks can be found with the conversion efficiency nearly 100%. A more outstanding performance can be achieved by using low-loss substrate. The in-depth physical mechanism is revealed by further analysis. Besides, the expressions referring to theoretical decomposed electric field are deduced.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial

Jianfeng Zhu, Shufang Li, Li Deng, Chen Zhang, Yang Yang, and Hongbo Zhu
Opt. Mater. Express 8(5) 1164-1173 (2018)

Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves

Yonghzi Cheng, Hui Luo, Fu Chen, Xuesong Mao, and Rongzhou Gong
OSA Continuum 2(8) 2391-2400 (2019)

Dielectric-resonator metasurfaces for broadband terahertz quarter- and half-wave mirrors

Wendy S. L. Lee, Rajour T. Ako, Mei Xian Low, Madhu Bhaskaran, Sharath Sriram, Christophe Fumeaux, and Withawat Withayachumnankul
Opt. Express 26(11) 14392-14406 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics (Springer, 1998).
  2. C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
    [Crossref]
  3. Z. Yang, F. Gao, Y. Hou, D. Hu, L. Pang, and X. Wu, “Tailoring enhanced chiroptical effect with Fabry–Perot cavity-coupled sandwich chiral metamaterials,” Chin. Opt. Lett. 14(6), 061602 (2016).
    [Crossref]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  5. M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
    [PubMed]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  7. Q. Sun, S. Wang, H. Liu, and S. Zhu, “Highly efficient mid-infrared metasurface based on metallic rods and plate,” Chin. Opt. Lett. 14(5), 051101 (2016).
    [Crossref]
  8. L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
    [Crossref]
  9. Z. Li, C. Luo, G. Yao, J. Yue, J. Ji, J. Yao, and F. Ling, “Design of a concise and dual-band tunable metamaterial absorber,” Chin. Opt. Lett. 14(10), 102303 (2016).
    [Crossref]
  10. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
    [Crossref] [PubMed]
  11. T. Bu, K. Chen, H. Liu, J. Liu, Z. Hong, and S. Zhuang, “Location-dependent metamaterials in terahertz range for reconfiguration purposes,” Photon. Res. 4(3), 122–125 (2016).
    [Crossref]
  12. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
    [Crossref]
  13. J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
    [Crossref] [PubMed]
  14. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  15. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
    [Crossref]
  16. M. Ali, A. Bhatti, Q. Haque, and S. Mahmood, “Global transmission diagrams for evanescent waves in a nonlinear hyperbolic metamaterial,” Chin. Opt. Lett. 13(9), 090601 (2015).
    [Crossref]
  17. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
    [Crossref] [PubMed]
  18. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  19. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
    [Crossref] [PubMed]
  20. X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4(4), 146–152 (2016).
    [Crossref]
  21. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  22. Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
    [Crossref]
  23. X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
    [Crossref]
  24. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  25. D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
    [Crossref]
  26. C. S. Malagisi, ““Microstrip disc element reflect array,” Eascon 78,” Electronics and Aerospace Systems Conference186–192 (1978).
  27. J. P. Montgomery, “A microstrip reflectarray antenna element,” Annales Dastrophysique, 113–159 (1978).
  28. R. E. Munson, H. A. Haddad, and J. W. Hanlen, “Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction,” US, US4684952 (1987).
  29. D. G. Gonzalez, G. E. Pollon, and J. F. Walker, “Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry,” US,US4905014 (1990).
  30. J. Huang, “Microstrip reflectarray,” Antennas and Propagation Society International Symposium, 612, 612–615 (1991).
  31. R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
    [Crossref]
  32. J. Huang, Reflectarray Antenna (Springer, 2005).

2016 (5)

2015 (4)

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

M. Ali, A. Bhatti, Q. Haque, and S. Mahmood, “Global transmission diagrams for evanescent waves in a nonlinear hyperbolic metamaterial,” Chin. Opt. Lett. 13(9), 090601 (2015).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

2013 (3)

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

2012 (2)

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

2007 (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

2006 (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1995 (1)

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
[Crossref]

1963 (1)

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ali, M.

Azad, A. K.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Berry, D.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Bhatti, A.

Bu, T.

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Cao, W.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chang, K.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
[Crossref]

Chen, K.

Chen, S.

Cheng, H.

Cheng, Y. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Cheng, Z. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Cong, L.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Cui, T. J.

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dietlein, C.

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, F.

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, R. Z.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Grossman, E.

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

Gu, J.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Han, J.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Haque, Q.

Hong, Z.

Hou, Y.

Hu, D.

Huang, J.

J. Huang, “Microstrip reflectarray,” Antennas and Propagation Society International Symposium, 612, 612–615 (1991).

Huang, X.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Javor, R. D.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
[Crossref]

Ji, J.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kasemo, B.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kennedy, W.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Lederer, F.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Li, J.

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Li, Z.

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ling, F.

Liu, H.

Liu, J.

Liu, W.

Luo, C.

Luukanen, A.

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

Mahmood, S.

Malagisi, C. S.

C. S. Malagisi, ““Microstrip disc element reflect array,” Eascon 78,” Electronics and Aerospace Systems Conference186–192 (1978).

Malech, R.

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

Menzel, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Nie, Y.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Pang, L.

Plum, E.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Popovi, Z.

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Schwind, M.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Sun, Q.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

Tian, X.

Tian, Z.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wan, X.

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

Wang, S.

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Wang, X.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wu, L.

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Wu, X.

Wu, X. D.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
[Crossref]

Xiao, B.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Yang, D.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Yang, H.

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Yang, Z.

Yao, G.

Yao, J.

Yin, J. Y.

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, P.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yue, J.

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Q.

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

Zhang, W.

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, R.

Zheludev, N. I.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S.

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhuang, S.

Zoric, I.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

Appl. Phys. Lett. (2)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100(5), 051909 (2012).
[Crossref]

Chin. Opt. Lett. (4)

IEEE Trans. Antenn. Propag. (3)

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antenn. Propag. 43(9), 932–939 (1995).
[Crossref]

D. Berry, R. Malech, and W. Kennedy, “The reflectarray antenna,” IEEE Trans. Antenn. Propag. 11(6), 645–651 (1963).
[Crossref]

C. Dietlein, A. Luukanen, Z. Popovi, and E. Grossman, “A W-band polarization converter and isolator,” IEEE Trans. Antenn. Propag. 55(6), 1804–1809 (2007).
[Crossref]

J. Electromagnet. Wave (1)

Y. Z. Cheng, Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, “Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators,” J. Electromagnet. Wave 27(14), 1850–1858 (2013).
[Crossref]

Nano Lett. (1)

M. Schwind, B. Kasemo, and I. Zorić, “Localized and propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

New J. Phys. (1)

L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, and W. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys. 14(11), 115013 (2012).
[Crossref]

Opt. Commun. (1)

X. Huang, B. Xiao, D. Yang, and H. Yang, “Ultra-broadband 90° polarization rotator based on bi-anisotropic metamaterial,” Opt. Commun. 338, 416–421 (2015).
[Crossref]

Opt. Lett. (2)

Photon. Res. (2)

Phys. Rev. B (1)

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Phys. Rev. Lett. (3)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Y. Yin, X. Wan, Q. Zhang, and T. J. Cui, “Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles,” Sci. Rep. 5, 12476 (2015).
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (7)

C. S. Malagisi, ““Microstrip disc element reflect array,” Eascon 78,” Electronics and Aerospace Systems Conference186–192 (1978).

J. P. Montgomery, “A microstrip reflectarray antenna element,” Annales Dastrophysique, 113–159 (1978).

R. E. Munson, H. A. Haddad, and J. W. Hanlen, “Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction,” US, US4684952 (1987).

D. G. Gonzalez, G. E. Pollon, and J. F. Walker, “Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry,” US,US4905014 (1990).

J. Huang, “Microstrip reflectarray,” Antennas and Propagation Society International Symposium, 612, 612–615 (1991).

J. D. Jackson, Classical Electrodynamics (Springer, 1998).

J. Huang, Reflectarray Antenna (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic diagram of the broadband half wave plate, where yellow stands for gold and cyan represents polyimide. And the incidence angle is θ. (b) The front view of one unit sell of the broadband half wave plate, x and y axes are used to analyze the cross polarization conversion, while u and v axes are used to mark the metamaterial anisotropic axes.
Fig. 2
Fig. 2 Reflectance (a) and PCR (b) of x-polarized and y-polarized normal incident wave.
Fig. 3
Fig. 3 Reflectance (a) and PCR (b) on the dependence of dielectric dissipation factor for x-polarized normal incidence.
Fig. 4
Fig. 4 (a) Unwrapped phase of both co-polarized and cross-polarized reflected wave, (b) polarization rotation angle ψ and ellipticity ϕ for x-polarized normal incident wave.
Fig. 5
Fig. 5 Reflectance of x-polarized normal incident wave for different P(a), L(b), α (c), and t (d).
Fig. 6
Fig. 6 Reflectance of disconnected patches (a) and fully connected patches (b). Insets: the front view of one unit sell of the explored case.
Fig. 7
Fig. 7 Unwrapped polarization rotation angle ψ (a) and ellipticity ϕ (b) of linearly polarized normal incident wave with different β.
Fig. 8
Fig. 8 Reflectance of co-polarization for u-polarized (a) and v-polarized (b) normal incident wave. Reflected fields of u-polarized (c) and v-polarized (d) normal incident wave. Insets: the polarization direction of incident wave with respect to the structure.
Fig. 9
Fig. 9 (a) Simulated and calculated reflectance of x-polarized normal incident wave. (b) Calculated reflectance of polarization converted reflected field for linearly polarized normal incident wave with different β.
Fig. 10
Fig. 10 (a) Unwrapped phases and reflections of both u-polarized and v-polarized normal incident wave. (b) Wrapped Δφ and Δr of u-polarized and v-polarized normal incident wave.
Fig. 11
Fig. 11 Reflectance and PCR on incidence angle θ dependence for s-polarized (a), (b) and p-polarized incidence (c), (d).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

R kj = I k r / I j i = ( E k r / E j i ) 2 = r kj 2
PC R x = R yx / ( R yx + R xx )
PC R y = R xy / ( R xy + R yy ) ,
Ψ= 1 2 tan 1 ( 2 E x E y E x 2 E y 2 cosδ ),
ϕ= 1 2 sin 1 ( 2 E x E y E x 2 + E y 2 sinδ ),
E u i =cosβ E exp[i(ωtkz)],
E v i =sinβ E exp[i(ωtkz)].
E u o =cosβ r uu E exp[i(ωt+kz+ ϕ u )],
E v o =sinβ r vv E exp[i(ωt+kz+ ϕ v )],
E u o =cosβ E (R e u +i Im u ),
E v o =sinβ E (R e v +i Im v ).
E co o =cosβ E u o sinβ E v o =E[ cos 2 β (Re u +i Im u )+ sin 2 β (Re v +i Im v )],
E con o =cosβ E u o +sinβ E v o =E[ cos 2 β (Re u +i Im u ) sin 2 β (Re v +i Im v )].
E x o = 1 2 E [( Re u + Re v )+i( Im u + Im v )],
E y o = 1 2 E [( Re u Re v )+i( Im u Im v )].
E u o =cosβ r uu E exp[i(ωt+kz+ ϕ u )],
E v o =sinβ r vv E exp[i(ωt+kz+ ϕ u )]exp(iΔϕ).
E co o =cos2β rE exp[i(ωt+kz+ ϕ u )]=cos2β E con o ,
E con o =rE exp[i(ωt+kz+ ϕ u )].
E x o =0,
E y o =rE exp[i(ωt+kz+ ϕ u )].

Metrics