Abstract

In this article, the authors have studied the optical properties of the donor-like and acceptor-like defects in a batch of NH3-doped ZnO films with high crystalline quality. The donors and acceptors responsible for the low-temperature photoluminescence lines have been clearly revealed. The main form of the shallow donors has been determined as the Zni-NO complex. A few possibilities have been proposed for the shallow acceptors, including the (NH4)Zn, (N2)Zn, and VZn small clusters. The transition within the Frenkel pair (Zni-VZn) should be the origin for the green deep-level emission. The post-growth annealing process could change the amounts of the donors and acceptors. The shallow and deep acceptors tend to form at higher annealing temperatures while the shallow donors could be suppressed simultaneously. Possible mechanisms of how the annealing process affecting the defects formation have been also discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 6(12) 3733-3740 (2016)

Investigation on the p-type formation mechanism of nitrogen ion implanted ZnO thin films induced by rapid thermal annealing

Zheng Huang, Haibo Ruan, Hong Zhang, Dongping Shi, Wanjun Li, Guoping Qin, Fang Wu, Liang Fang, and Chunyang Kong
Opt. Mater. Express 9(7) 3098-3108 (2019)

Identification and control of native defects in N-doped ZnO microrods

Zhengrong Yao, Kun Tang, Jiandong Ye, Zhonghua Xu, Shunming Zhu, and Shulin Gu
Opt. Mater. Express 6(9) 2847-2856 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
    [Crossref]
  2. C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
    [Crossref] [PubMed]
  3. G. Petretto and F. Bruneval, “Comprehensive Ab Initio Study of Doping in Bulk ZnO with Group-V Elements,” Phys. Rev. Appl. 1(2), 024005 (2014).
    [Crossref]
  4. J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).
  5. Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
    [Crossref]
  6. P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
    [Crossref]
  7. M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
    [Crossref] [PubMed]
  8. B. Puchala and D. Morgan, “Stable interstitial dopant-vacancy complexes in ZnO,” Phys. Rev. B 85(19), 195207 (2012).
    [Crossref]
  9. J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
    [Crossref]
  10. W. R. L. Lambrecht and A. Boonchun, “Identification of a N-related shallow acceptor and electron paramagnetic resonance center in ZnO: N2+ on the Zn site,” Phys. Rev. B 87(19), 195207 (2013).
    [Crossref]
  11. J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
    [Crossref]
  12. C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
    [Crossref]
  13. K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
    [Crossref]
  14. K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
    [Crossref]
  15. Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
    [Crossref]
  16. K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
    [Crossref]
  17. J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
    [Crossref]
  18. K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
    [Crossref]
  19. K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
    [Crossref]
  20. K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
    [Crossref]
  21. W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
    [Crossref]
  22. D. C. Look, “Electrical and optical properties of p-type ZnO,” Semicond. Sci. Technol. 20(4), S55–S61 (2005).
    [Crossref]
  23. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
    [Crossref]
  24. K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
    [Crossref]
  25. K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
    [Crossref]
  26. J. R. Haynes, “Experimental Proof of the Existence of a New Electronic Complex in Silicon,” Phys. Rev. Lett. 4(7), 361–363 (1960).
    [Crossref]
  27. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
    [Crossref]
  28. X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
    [Crossref]
  29. Yu. V. Gorelkinskii and G. D. Watkins, “Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance,” Phys. Rev. B 69(11), 115212 (2004).
    [Crossref]
  30. L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
    [Crossref] [PubMed]
  31. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
    [Crossref]
  32. Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
    [Crossref]
  33. H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
    [Crossref]
  34. M. Grundmann, The Physics of Semiconductors (Springer-Verlag, Berlin, 2006), p. 264.
  35. H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
    [Crossref]
  36. D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
    [Crossref] [PubMed]
  37. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
    [Crossref]
  38. G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
    [Crossref]
  39. I. Y. Y. Bu, “Sol-gel synthesis of p-type zinc oxide using aluminium nitrate and ammonia,” J. Ind. Eng. Chem. 28, 91–96 (2015).
    [Crossref]
  40. X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
    [Crossref]
  41. O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
    [Crossref]
  42. U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
    [Crossref]
  43. F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
    [Crossref]
  44. K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
    [Crossref]
  45. H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
    [Crossref]

2017 (3)

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

2016 (1)

2015 (6)

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

I. Y. Y. Bu, “Sol-gel synthesis of p-type zinc oxide using aluminium nitrate and ammonia,” J. Ind. Eng. Chem. 28, 91–96 (2015).
[Crossref]

2014 (2)

G. Petretto and F. Bruneval, “Comprehensive Ab Initio Study of Doping in Bulk ZnO with Group-V Elements,” Phys. Rev. Appl. 1(2), 024005 (2014).
[Crossref]

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

2013 (3)

W. R. L. Lambrecht and A. Boonchun, “Identification of a N-related shallow acceptor and electron paramagnetic resonance center in ZnO: N2+ on the Zn site,” Phys. Rev. B 87(19), 195207 (2013).
[Crossref]

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

2012 (3)

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

B. Puchala and D. Morgan, “Stable interstitial dopant-vacancy complexes in ZnO,” Phys. Rev. B 85(19), 195207 (2012).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

2011 (6)

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
[Crossref]

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

2010 (2)

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

2009 (3)

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

2008 (1)

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

2007 (1)

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

2006 (1)

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

2005 (3)

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

D. C. Look, “Electrical and optical properties of p-type ZnO,” Semicond. Sci. Technol. 20(4), S55–S61 (2005).
[Crossref]

2004 (1)

Yu. V. Gorelkinskii and G. D. Watkins, “Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance,” Phys. Rev. B 69(11), 115212 (2004).
[Crossref]

2003 (2)

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

2002 (1)

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

1999 (1)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

1997 (1)

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

1983 (1)

G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
[Crossref]

1960 (1)

J. R. Haynes, “Experimental Proof of the Existence of a New Electronic Complex in Silicon,” Phys. Rev. Lett. 4(7), 361–363 (1960).
[Crossref]

Alves, E.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Amini, M. N.

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

Aspnes, D. E.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Bang, J.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Bian, J.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Boonchun, A.

W. R. L. Lambrecht and A. Boonchun, “Identification of a N-related shallow acceptor and electron paramagnetic resonance center in ZnO: N2+ on the Zn site,” Phys. Rev. B 87(19), 195207 (2013).
[Crossref]

Brillson, L. J.

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Bruneval, F.

G. Petretto and F. Bruneval, “Comprehensive Ab Initio Study of Doping in Bulk ZnO with Group-V Elements,” Phys. Rev. Appl. 1(2), 024005 (2014).
[Crossref]

Bu, I. Y. Y.

I. Y. Y. Bu, “Sol-gel synthesis of p-type zinc oxide using aluminium nitrate and ammonia,” J. Ind. Eng. Chem. 28, 91–96 (2015).
[Crossref]

Buyanova, I. A.

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

Callsen, G.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Cantwell, G.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Chen, H.

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

Chen, W. M.

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

Choy, S. F.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Cobet, M.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Cowie, B. C. C.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Curtiss, L. A.

G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
[Crossref]

Deng, S.-H.

P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
[Crossref]

Dietrich, M.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Dong, Y.

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Eason, D. B.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Eisermann, S.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Everitt, H. O.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Farlow, G. C.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Fujita, Y.

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

Gao, F.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

Gorelkinskii, Yu. V.

Yu. V. Gorelkinskii and G. D. Watkins, “Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance,” Phys. Rev. B 69(11), 115212 (2004).
[Crossref]

Gu, R.

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

Gu, S. L.

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Haboeck, U.

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Haynes, J. R.

J. R. Haynes, “Experimental Proof of the Existence of a New Electronic Complex in Silicon,” Phys. Rev. Lett. 4(7), 361–363 (1960).
[Crossref]

Hemsky, J. W.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Henry, M. O.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Hoffmann, A.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Hu, L.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Huang, J.

P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
[Crossref]

Huang, S. M.

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

Jankowski, N.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Jiang, M.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Jiao, C. M.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Jin, G.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Jin, P.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Johnston, K.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Jones, R. L.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Kaiser, M.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Kato, H.

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

Kawasaki, M.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Khachadorian, S.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Kilanski, L.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Kim, Y.-S.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

Kirste, R.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Koinuma, H.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Kong, J.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Kumar, O. S.

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

Kuznetsov, A. Yu.

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Lambrecht, W. R. L.

W. R. L. Lambrecht and A. Boonchun, “Identification of a N-related shallow acceptor and electron paramagnetic resonance center in ZnO: N2+ on the Zn site,” Phys. Rev. B 87(19), 195207 (2013).
[Crossref]

Lamoen, D.

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

Lautenschläger, S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Li, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Li, P.

P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
[Crossref]

Li, S. Z.

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

Liang, H.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Limpijumnong, S.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Litton, C. W.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Liu, J. G.

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

Liu, L.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Liu, W.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Liu, X. L.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Lo, G. Q.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Lockrey, M. N.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Look, D. C.

D. C. Look, “Electrical and optical properties of p-type ZnO,” Semicond. Sci. Technol. 20(4), S55–S61 (2005).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Ma, J.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Maroni, V. A.

G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
[Crossref]

McCabe, D.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

McCluskey, M. D.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Mcglynn, E.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Meyer, B. K.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Miyamoto, K.

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

Mohanta, A.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Morgan, D.

B. Puchala and D. Morgan, “Stable interstitial dopant-vacancy complexes in ZnO,” Phys. Rev. B 85(19), 195207 (2012).
[Crossref]

Muth, J. F.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Nakaib, R.

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

Nenstiel, C.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Neugebauer, J.

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Nishimoto, N.

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

Nordlund, K.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Ohtomo, A.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Ostapenko, I. A.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Pannirselvam, S.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

Papatheodorou, G. N.

G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
[Crossref]

Park, C. H.

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

Partoens, B.

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

Pearton, S. J.

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

Petretto, G.

G. Petretto and F. Bruneval, “Comprehensive Ab Initio Study of Doping in Bulk ZnO with Group-V Elements,” Phys. Rev. Appl. 1(2), 024005 (2014).
[Crossref]

Philips, M. R.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Phillips, M. R.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Puchala, B.

B. Puchala and D. Morgan, “Stable interstitial dopant-vacancy complexes in ZnO,” Phys. Rev. B 85(19), 195207 (2012).
[Crossref]

Qiu, D.-J.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Qiu, Y.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Rauch, C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Reparaz, J. S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Reunchan, P.

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Reynolds, C. L.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Reynolds, D. C.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Reynolds, J. G.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Rodina, A. V.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Rodt, S.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Rowe, J. E.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

Saniz, R.

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

Sano, M.

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

Schlichting, S.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Schulze, J.-H.

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Segawa, Y.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Shan, C. X.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Shan, Z. P.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Shen, D. Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Shen, W.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Shen, Y.

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Shi, K.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Shi, Y.

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

Sizelove, J. R.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Sun, X. W.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Sun, Y.-Y.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

Svensson, B. G.

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Tadich, A.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Tan, S. T.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

Tang, K.

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

Tang, Z. K.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Tarun, M. C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Teo, K. L.

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

Thomsen, C.

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

Thomsen, L.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Ton-That, C.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Tuomisto, F.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

Van de Walle, C. G.

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Vlasenko, L. S.

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

Wagner, M. R.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

Wang, B.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Wang, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, S.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, X. J.

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

Wang, Z. G.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Watanabe, E.

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

Watkins, G. D.

Yu. V. Gorelkinskii and G. D. Watkins, “Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance,” Phys. Rev. B 69(11), 115212 (2004).
[Crossref]

Wei, H. Y.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

West, D.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

Wong, G. K. L.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Wu, H.-Z.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Wu, Y. X.

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Xia, M.

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Xu, J.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Xu, Z. H.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Yang, S. Y.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Yao, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Yao, T.

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

Yao, Z. R.

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Ye, J. D.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Yuan, Z.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Zeuner, A.

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

Zhang, H.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Zhang, P. F.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Zhang, R.

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Zhang, S. B.

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

Zhang, Y.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

Zhang, Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zhao, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zhao, Z.

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Zheng, Y. D.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Zhu, L.

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

Zhu, Q. S.

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

Zhu, S. M.

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, R. Gu, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “The thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films,” Opt. Mater. Express 7(2), 593–605 (2017).
[Crossref]

Z. R. Yao, K. Tang, J. D. Ye, Z. H. Xu, S. M. Zhu, and S. L. Gu, “Identification and control of native defects in N-doped ZnO microrods,” Opt. Mater. Express 6(9), 2847–2856 (2016).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

Zhu, X.

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Zhu, Z. B.

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

Zu, P.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Appl. Phys. Lett. (6)

J. Bang, Y.-S. Kim, C. H. Park, F. Gao, and S. B. Zhang, “Understanding the presence of vacancy clusters in ZnO from a kinetic perspective,” Appl. Phys. Lett. 104(24), 242104 (2014).

P. Li, S.-H. Deng, and J. Huang, “First-principles studies on the dominant acceptor and the activation mechanism of phosphorus-doped ZnO,” Appl. Phys. Lett. 99(11), 111902 (2011).
[Crossref]

J. D. Ye, S. T. Tan, S. Pannirselvam, S. F. Choy, X. W. Sun, G. Q. Lo, and K. L. Teo, “Surfactant effect of arsenic doping on modification of ZnO (0001) growth kinetics,” Appl. Phys. Lett. 95(10), 101905 (2009).
[Crossref]

K. Tang, S. L. Gu, S. M. Zhu, J. G. Liu, H. Chen, J. D. Ye, R. Zhang, and Y. D. Zheng, “Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO,” Appl. Phys. Lett. 95(19), 192106 (2009).
[Crossref]

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, “Shallow acceptor complexes in p-type ZnO,” Appl. Phys. Lett. 102(15), 152114 (2013).
[Crossref]

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

J. Alloys Compd. (2)

K. Tang, S. M. Zhu, Z. H. Xu, Y. Shen, J. D. Ye, and S. L. Gu, “Formation of VZn-NO acceptors with the assistance of tellurium in nitrogen-doped ZnO films,” J. Alloys Compd. 699, 484–488 (2017).
[Crossref]

K. Tang, S. M. Zhu, Z. H. Xu, J. D. Ye, and S. L. Gu, “Experimental investigation on the nitrogen related complex acceptors in nitrogen-doped ZnO films,” J. Alloys Compd. 696, 590–594 (2017).
[Crossref]

J. Appl. Phys. (3)

K. Shi, P. F. Zhang, H. Y. Wei, C. M. Jiao, P. Jin, X. L. Liu, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, “Thermal diffusion of nitrogen into ZnO film deposited on InN/sapphire substrate by metal organic chemical vapor deposition,” J. Appl. Phys. 110(11), 113509 (2011).
[Crossref]

K. Tang, S. L. Gu, J. D. Ye, S. M. Huang, R. Gu, R. Zhang, and Y. D. Zheng, “Temperature-dependent photoluminescence of ZnO films codoped with tellurium and nitrogen,” J. Appl. Phys. 112(10), 103534 (2012).
[Crossref]

K. Tang, R. Gu, S. L. Gu, J. D. Ye, S. M. Zhu, Z. R. Yao, Z. H. Xu, and Y. D. Zheng, “Annealing in tellurium-nitrogen co-doped ZnO films: The roles of intrinsic zinc defects,” J. Appl. Phys. 117(13), 135304 (2015).
[Crossref]

J. Chem. Phys. (1)

G. N. Papatheodorou, L. A. Curtiss, and V. A. Maroni, “Raman spectra, ab initio molecular orbital calculations, vibrational analysis, and thermodynamic functions for NH3:AlX3 (X = F, Cl, Br),” J. Chem. Phys. 78(6), 3303–3315 (1983).
[Crossref]

J. Cryst. Growth (2)

O. S. Kumar, E. Watanabe, R. Nakaib, N. Nishimoto, and Y. Fujita, “Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol,” J. Cryst. Growth 298, 491–494 (2007).
[Crossref]

W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, Y. X. Wu, Z. P. Shan, R. Zhang, Y. D. Zheng, S. F. Choy, G. Q. Lo, and X. W. Sun, “High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO,” J. Cryst. Growth 310(15), 3448–3452 (2008).
[Crossref]

J. Ind. Eng. Chem. (1)

I. Y. Y. Bu, “Sol-gel synthesis of p-type zinc oxide using aluminium nitrate and ammonia,” J. Ind. Eng. Chem. 28, 91–96 (2015).
[Crossref]

J. Lumin. (2)

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 131(6), 1189–1192 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Bang, Y.-Y. Sun, D. West, B. K. Meyer, and S. B. Zhang, “Molecular doping of ZnO by ammonia: a possible shallow acceptor,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 339–344 (2015).
[Crossref]

J. Mater. Res. (1)

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, and I. A. Buyanova, “Oxygen and zinc vacancies in as-grown ZnO single crystals,” J. Phys. D Appl. Phys. 42(17), 175411 (2009).
[Crossref]

J. Vac. Sci. Technol. A (1)

K. Tang, S. L. Gu, S. Z. Li, J. D. Ye, S. M. Zhu, H. Chen, J. G. Liu, R. Zhang, Y. Shi, and Y. D. Zheng, “Influence of thermally diffused aluminum atoms from sapphire substrate on the properties of ZnO epilayers grown by metal-organic chemical vapor deposition,” J. Vac. Sci. Technol. A 29(3), 03A106 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kato, M. Sano, K. Miyamoto, and T. Yao, “Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Jpn. J. Appl. Phys. 42(1), 2241–2244 (2003).
[Crossref]

Nature (1)

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, “Photoluminescence and resonant Raman scattering in N-doped ZnO thin films,” Opt. Commun. 283(13), 2695–2699 (2010).
[Crossref]

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

M. N. Amini, R. Saniz, D. Lamoen, and B. Partoens, “The role of the VZn-NO-H complex in the p-type conductivity in ZnO,” Phys. Chem. Chem. Phys. 17(7), 5485–5489 (2015).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

G. Petretto and F. Bruneval, “Comprehensive Ab Initio Study of Doping in Bulk ZnO with Group-V Elements,” Phys. Rev. Appl. 1(2), 024005 (2014).
[Crossref]

Phys. Rev. B (7)

Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81(8), 081201 (2010).
[Crossref]

B. Puchala and D. Morgan, “Stable interstitial dopant-vacancy complexes in ZnO,” Phys. Rev. B 85(19), 195207 (2012).
[Crossref]

W. R. L. Lambrecht and A. Boonchun, “Identification of a N-related shallow acceptor and electron paramagnetic resonance center in ZnO: N2+ on the Zn site,” Phys. Rev. B 87(19), 195207 (2013).
[Crossref]

Yu. V. Gorelkinskii and G. D. Watkins, “Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K: Study by optical detection of electron paramagnetic resonance,” Phys. Rev. B 69(11), 115212 (2004).
[Crossref]

C. Ton-That, L. Zhu, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, “Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing,” Phys. Rev. B 92(2), 024103 (2015).
[Crossref]

M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffmann, A. V. Rodina, M. R. Philips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, “Bound exictons in ZnO: Structural defect complexes versus shallow impurity centers,” Phys. Rev. B 84(3), 035313 (2011).
[Crossref]

K. Johnston, M. O. Henry, D. McCabe, E. Mcglynn, M. Dietrich, E. Alves, and M. Xia, “Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques,” Phys. Rev. B 73(16), 165212 (2006).
[Crossref]

Phys. Rev. Lett. (4)

J. R. Haynes, “Experimental Proof of the Existence of a New Electronic Complex in Silicon,” Phys. Rev. Lett. 4(7), 361–363 (1960).
[Crossref]

D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO,” Phys. Rev. Lett. 95(22), 225502 (2005).
[Crossref] [PubMed]

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Phys. Status Solidi (1)

U. Haboeck, A. Hoffmann, C. Thomsen, A. Zeuner, and B. K. Meyer, “High-energy vibrational modes in nitrogen-doped ZnO,” Phys. Status Solidi 242(3), R21–R23 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

D. C. Look, “Electrical and optical properties of p-type ZnO,” Semicond. Sci. Technol. 20(4), S55–S61 (2005).
[Crossref]

Solid State Commun. (1)

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103(8), 459–463 (1997).
[Crossref]

Vacuum (1)

H. Zhang, L. Hu, Z. Zhao, J. Ma, Y. Qiu, B. Wang, H. Liang, and J. Bian, “Photoluminescence study of Sb-doped ZnO films deposited by a closed tube CVT technique,” Vacuum 85(6), 718–720 (2011).
[Crossref]

Other (2)

M. Grundmann, The Physics of Semiconductors (Springer-Verlag, Berlin, 2006), p. 264.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor-acceptor pair recombinations in ZnO,” Phys. Stats. Sol.241(2), 231–260 (2004) (b).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The 13-K near band-edge PL spectra for the high-quality NH3-doped ZnO films. (b) The extracted intensity ratio between A0X and D0X. The two insets show the extracted intensity of the D0X and A0X, respectively. (c) The extracted intensity of D10X and A10X in the Y-line spectrum region. (d) The temperature dependence of energetic position for the D0X, D10X, and DAP transitions of the sample annealed at 600 °C, and for the A0X, A10X, and DAP transitions of the sample annealed at 900 °C. The black solid and dashed lines are the fitting curves by the Varshni relation [ E( T )=E( 0 ) α T 2 T+β ], giving α ~7.1 × 10−4 eV/K, and β ~836 K. It can be seen that the D0X, A0X, D10X, and A10X show good agreement to the Varshni relation. While the DAP transitions deviate from the relation with less red shift as increasing the measuring temperature.
Fig. 2
Fig. 2 The 13-K PL spectra for the high-quality NH3-doped ZnO films in the range of 2.2-3.4 eV, showing the DAP and deep-level emissions.
Fig. 3
Fig. 3 The Raman backscattering spectra of the as-grown, 600 °C-annealed, and 900 °C-annealed samples in the range of (a) 120-220 cm−1, (b) 2150-2300 cm−1, and (c) 3000-3200 cm−1 wavenumber regions.
Fig. 4
Fig. 4 The schematic diagram showing the main optical transition paths and the defects responsible for the transitions.

Metrics