Abstract

The lateral shifts (i.e., the spatial GH shifts) of reflected wave from a uniaxial anisotropic chiral metamaterial slab are predicted based on the stationary-phase method. The two cases of the uniaxial chiral slab are investigated in detail. It is found that the negative uniaxial chiral slab can be realized for both the two cases as the group refraction of the left circularly polarized (LCP) wave is negative. The GH shifts of the perpendicular component (Δsp) are similar for both of the cases, which are enhanced at close-to-grazing incidence. However, the GH shifts of the parallel component (Δpp) can be enhanced near the Brewster angle. For case (I), by introducing a different chirality parameter and the thickness of the chiral slab, the transition between the positively and negatively enhanced GH shifts of the parallel component (Δpp) can be realized. For case (II), the magnitude and the position of the enhancement of the positively enhanced GH shifts (Δpp) can be tunable by adjusting the chirality and the thickness of the chiral slab.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab

Y. Y. Huang, W. T. Dong, L. Gao, and C. W. Qiu
Opt. Express 19(2) 1310-1323 (2011)

Chirality induced asymmetric spin splitting of light beams reflected from an air-chiral interface

Mengjiang Jiang, Hai Lin, Linqing Zhuo, Wenguo Zhu, Heyuan Guan, Jianhui Yu, Huihui Lu, Jieyuan Tan, and Zhe Chen
Opt. Express 26(6) 6593-6601 (2018)

An invisible medium for circularly polarized electromagnetic waves

Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano
Opt. Express 16(25) 20869-20875 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1(7-8), 333–346 (1947).
    [Crossref]
  2. L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31(1), 101–103 (2006).
    [Crossref] [PubMed]
  3. P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
    [Crossref]
  4. M. Miri, A. Naqavi, A. Khavasi, K. Mehrany, S. Khorasani, and B. Rashidian, “Geometrical approach in physical understanding of the Goos-Haenchen shift in one- and two-dimensional periodic structures,” Opt. Lett. 33(24), 2940–2942 (2008).
    [Crossref] [PubMed]
  5. F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
    [Crossref]
  6. L. G. Wang, H. Chen, and S. Y. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30(21), 2936–2938 (2005).
    [Crossref] [PubMed]
  7. J. B. Götte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16(6), 3961–3969 (2008).
    [Crossref] [PubMed]
  8. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17(24), 21433–21441 (2009).
    [Crossref] [PubMed]
  9. M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
    [Crossref]
  10. M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
    [Crossref]
  11. G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
    [Crossref] [PubMed]
  12. S. Goswami, M. Pal, A. Nandi, P. K. Panigrahi, and N. Ghosh, “Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection,” Opt. Lett. 39(21), 6229–6232 (2014).
    [Crossref] [PubMed]
  13. S. Goswami, S. Dhara, M. Pal, A. Nandi, P. K. Panigrahi, and N. Ghosh, “Optimized weak measurements of Goos-Hänchen and Imbert-Fedorov shifts in partial reflection,” Opt. Express 24(6), 6041–6051 (2016).
    [Crossref] [PubMed]
  14. A. Aiello, M. Merano, and J.P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A 80, 061801(R) (2009).
    [Crossref]
  15. X. Li, P. Wang, F. Xing, X. D. Chen, Z. B. Liu, and J. G. Tian, “Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method,” Opt. Lett. 39(19), 5574–5577 (2014).
    [Crossref] [PubMed]
  16. S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
    [Crossref]
  17. P. R. Berman, “Goos-Hӓnchen shift in negatively refractive media,” Phys. Rev. E 66(6), 0676031 (2002).
    [Crossref]
  18. J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
    [Crossref]
  19. A. Lakhtakia, “On planewave remittances and Goos-Hӓnchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23(1), 71–75 (2003).
    [Crossref]
  20. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  21. C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
    [Crossref]
  22. J.F. Zhou, J.F. Dong, N.B. Wang, T. Koschny, M. Kafesaki, and C.M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [Crossref]
  23. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  24. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
    [Crossref] [PubMed]
  25. J. F. Dong and B. Liu, “Goos-Hӓnchen shift at the surface of the chiral negative refraction medium,” in Proceedings of the 2008 International workshop on metamaterials, Nanjing, China (Academic,2008), pp. 98–101.
    [Crossref]
  26. W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hӓnchen shift at the surface of chiral negative refractive media,” Progress in Electromagnetics Research, PIER 104, 255–268 (2009).
    [Crossref]
  27. Y. Y. Huang, W. T. Dong, L. Gao, and D. W. Qiu, “Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab,” Opt. Express 19(2), 1310–1323 (2011).
    [Crossref] [PubMed]
  28. B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17(24), 21433–21441 (2009).
    [Crossref] [PubMed]
  29. Y. Huang, B. Zhao, and L. Gao, “Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites,” J. Opt. Soc. Am. A 29(7), 1436–1444 (2012).
    [Crossref] [PubMed]
  30. H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
    [Crossref] [PubMed]
  31. Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
    [Crossref]
  32. Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99(6), 066114 (2006).
    [Crossref]
  33. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
    [Crossref]
  34. G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
    [Crossref]
  35. Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73(11), 113104 (2006).
    [Crossref]
  36. Q. Cheng and T. J. Cui, “Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media,” J. Opt. Soc. Am. A 23(12), 3203–3207 (2006).
    [Crossref] [PubMed]
  37. J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Progress In Electromagnetics Research, PIER 127, 389–404 (2012).
    [Crossref]
  38. M. A. Baqir and P. K. Choudhury, “Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions,” J. Electromagn. Waves Appl. 27(6), 783–793 (2013).
    [Crossref]
  39. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Academic, 1994).

2017 (1)

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

2016 (1)

2014 (2)

2013 (3)

G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
[Crossref] [PubMed]

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

M. A. Baqir and P. K. Choudhury, “Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions,” J. Electromagn. Waves Appl. 27(6), 783–793 (2013).
[Crossref]

2012 (2)

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Progress In Electromagnetics Research, PIER 127, 389–404 (2012).
[Crossref]

Y. Huang, B. Zhao, and L. Gao, “Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites,” J. Opt. Soc. Am. A 29(7), 1436–1444 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

2009 (7)

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17(24), 21433–21441 (2009).
[Crossref] [PubMed]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

B. Zhao and L. Gao, “Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites,” Opt. Express 17(24), 21433–21441 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hӓnchen shift at the surface of chiral negative refractive media,” Progress in Electromagnetics Research, PIER 104, 255–268 (2009).
[Crossref]

2008 (4)

Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
[Crossref]

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
[Crossref]

M. Miri, A. Naqavi, A. Khavasi, K. Mehrany, S. Khorasani, and B. Rashidian, “Geometrical approach in physical understanding of the Goos-Haenchen shift in one- and two-dimensional periodic structures,” Opt. Lett. 33(24), 2940–2942 (2008).
[Crossref] [PubMed]

J. B. Götte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16(6), 3961–3969 (2008).
[Crossref] [PubMed]

2007 (2)

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

2006 (4)

Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99(6), 066114 (2006).
[Crossref]

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73(11), 113104 (2006).
[Crossref]

Q. Cheng and T. J. Cui, “Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media,” J. Opt. Soc. Am. A 23(12), 3203–3207 (2006).
[Crossref] [PubMed]

L. G. Wang and S. Y. Zhu, “Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals,” Opt. Lett. 31(1), 101–103 (2006).
[Crossref] [PubMed]

2005 (2)

L. G. Wang, H. Chen, and S. Y. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30(21), 2936–2938 (2005).
[Crossref] [PubMed]

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

2003 (1)

A. Lakhtakia, “On planewave remittances and Goos-Hӓnchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23(1), 71–75 (2003).
[Crossref]

2002 (2)

P. R. Berman, “Goos-Hӓnchen shift in negatively refractive media,” Phys. Rev. E 66(6), 0676031 (2002).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
[Crossref]

1947 (1)

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1(7-8), 333–346 (1947).
[Crossref]

Aiello, A.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

J. B. Götte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16(6), 3961–3969 (2008).
[Crossref] [PubMed]

Albuquerque, E. L.

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

Baqir, M. A.

M. A. Baqir and P. K. Choudhury, “Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions,” J. Electromagn. Waves Appl. 27(6), 783–793 (2013).
[Crossref]

Berman, P. R.

P. R. Berman, “Goos-Hӓnchen shift in negatively refractive media,” Phys. Rev. E 66(6), 0676031 (2002).
[Crossref]

Cai, L.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Chen, H.

Chen, R.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
[Crossref]

Chen, S. Z.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Chen, X.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Chen, X. D.

Chen, Y. Y.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Cheng, M.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
[Crossref]

Cheng, Q.

Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99(6), 066114 (2006).
[Crossref]

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73(11), 113104 (2006).
[Crossref]

Q. Cheng and T. J. Cui, “Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media,” J. Opt. Soc. Am. A 23(12), 3203–3207 (2006).
[Crossref] [PubMed]

Choudhury, P. K.

M. A. Baqir and P. K. Choudhury, “Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions,” J. Electromagn. Waves Appl. 27(6), 783–793 (2013).
[Crossref]

Cui, T. J.

Q. Cheng and T. J. Cui, “Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media,” J. Opt. Soc. Am. A 23(12), 3203–3207 (2006).
[Crossref] [PubMed]

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73(11), 113104 (2006).
[Crossref]

Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99(6), 066114 (2006).
[Crossref]

Da, H. X.

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

da Costa, J. A. P.

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

Dhara, S.

Dong, J.

Dong, J. F.

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Progress In Electromagnetics Research, PIER 127, 389–404 (2012).
[Crossref]

Dong, W. T.

Y. Y. Huang, W. T. Dong, L. Gao, and D. W. Qiu, “Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab,” Opt. Express 19(2), 1310–1323 (2011).
[Crossref] [PubMed]

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hӓnchen shift at the surface of chiral negative refractive media,” Progress in Electromagnetics Research, PIER 104, 255–268 (2009).
[Crossref]

Dumelow, T.

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

Feng, S.

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
[Crossref]

Gao, L.

Ghosh, N.

Goos, F.

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1(7-8), 333–346 (1947).
[Crossref]

Goswami, S.

Götte, J. B.

Hanchen, H.

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1(7-8), 333–346 (1947).
[Crossref]

Hermosa, N.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

Hou, P.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Huang, Y.

Huang, Y. Y.

Jayaswal, G.

Khavasi, A.

Khorasani, S.

Kong, J. A.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
[Crossref]

Koschny, T.

Kraftmakher, G.

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

Lakhtakia, A.

A. Lakhtakia, “On planewave remittances and Goos-Hӓnchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23(1), 71–75 (2003).
[Crossref]

Li, J.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Progress In Electromagnetics Research, PIER 127, 389–404 (2012).
[Crossref]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, L. W.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Li, X.

Li, Z. Y.

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

Lima, F.

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

Liu, M. X.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Liu, Z. B.

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Luo, H. L.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Mao, H. M.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Mehrany, K.

Merano, M.

G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
[Crossref] [PubMed]

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

Mi, C. Q.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Miri, M.

Mistura, G.

Nandi, A.

Naqavi, A.

Pal, M.

Pan, T.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Panigrahi, P. K.

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Qiu, C. W.

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hӓnchen shift at the surface of chiral negative refractive media,” Progress in Electromagnetics Research, PIER 104, 255–268 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Qiu, D. W.

Rashidian, B.

Shi, J. L.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Soukoulis, C.

Sun, J.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Tian, J. G.

van Exter, M. P.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

Wang, C.

Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
[Crossref]

Wang, L. G.

Wang, P.

Wang, Q.

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Wang, Z. P.

Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
[Crossref]

Wen, S. C.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Woerdman, J. P.

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

J. B. Götte, A. Aiello, and J. P. Woerdman, “Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics,” Opt. Express 16(6), 3961–3969 (2008).
[Crossref] [PubMed]

Woerdoman, J. P.

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

Wu, B. K.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
[Crossref]

Xiao, Y. T.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Xing, F.

Xu, C.

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

Xu, G. D.

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Yao, H. Y.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Yeo, S. T.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, Y.

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
[Crossref]

Zhang, Z. H.

Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
[Crossref]

Zhao, B.

Zhou, J.

Zhu, S. Y.

Zouhdi, S.

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Ann. Phys. (2)

F. Goos and H. Hanchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 1(7-8), 333–346 (1947).
[Crossref]

G. D. Xu, Y. T. Xiao, J. Li, H. M. Mao, J. Sun, and T. Pan, “Imbert-Fedorov shifts of a Gaussian beam reflected from uniaxially anisotropic chiral media,” Ann. Phys. 335, 33–46 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

J. A. Kong, B. K. Wu, and Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80(12), 2084–2086 (2002).
[Crossref]

Electromagnetics (1)

A. Lakhtakia, “On planewave remittances and Goos-Hӓnchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23(1), 71–75 (2003).
[Crossref]

Eur. Phys. J. D (1)

M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50(1), 81–85 (2008).
[Crossref]

J. Appl. Phys. (1)

Q. Cheng and T. J. Cui, “Lateral shifts of optical beams on the interface of anisotropic metamaterial,” J. Appl. Phys. 99(6), 066114 (2006).
[Crossref]

J. Electromagn. Waves Appl. (1)

M. A. Baqir and P. K. Choudhury, “Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions,” J. Electromagn. Waves Appl. 27(6), 783–793 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

M. Merano, A. Aiello, M. P. van Exter, and J. P. Woerdoman, “Observing angular deviations in the specular reflection of a light beam,” Nat. Photonics 3(6), 337–340 (2009).
[Crossref]

Opt. Commun. (1)

Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hӓnchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281(11), 3019–3024 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. A (2)

M. Merano, N. Hermosa, J. P. Woerdman, and A. Aiello, “How orbital angular momentum affects beam shifts in optical reflection,” Phys. Rev. A 82(2), 023817 (2010).
[Crossref]

P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, “Giant bistable shifts for one-dimensional nonlinear photonic crystals,” Phys. Rev. A 75(4), 045802 (2007).
[Crossref]

Phys. Rev. B (3)

F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. P. da Costa, “Power flow associated with the Goos-Hӓchen shift of a normally incident electromagnetic beam reflected off an antiferromagnet,” Phys. Rev. B 79(15), 155124 (2009).
[Crossref]

C. W. Qiu, H. Y. Yao, L. W. Li, S. Zouhdi, and S. T. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance and negative refraction,” Phys. Rev. B 75(15), 155120 (2007).
[Crossref]

Q. Cheng and T. J. Cui, “Negative refractions in uniaxially anisotropic chiral media,” Phys. Rev. B 73(11), 113104 (2006).
[Crossref]

Phys. Rev. E (2)

H. X. Da, C. Xu, Z. Y. Li, and G. Kraftmakher, “Beam shifting of an anisotropic negative refractive medium,” Phys. Rev. E.  71(6), 066612 (2005).
[Crossref] [PubMed]

P. R. Berman, “Goos-Hӓnchen shift in negatively refractive media,” Phys. Rev. E 66(6), 0676031 (2002).
[Crossref]

Phys. Rev. Lett. (1)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Progress in Electromagnetics Research, PIER (1)

W. T. Dong, L. Gao, and C. W. Qiu, “Goos-Hӓnchen shift at the surface of chiral negative refractive media,” Progress in Electromagnetics Research, PIER 104, 255–268 (2009).
[Crossref]

J. F. Dong and J. Li, “The reflection and transmission of electromagnetic waves by a uniaxial chiral slab,” Progress In Electromagnetics Research, PIER 127, 389–404 (2012).
[Crossref]

Science (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Other (4)

A. Aiello, M. Merano, and J.P. Woerdman, “Duality between spatial and angular shift in optical reflection,” Phys. Rev. A 80, 061801(R) (2009).
[Crossref]

J. F. Dong and B. Liu, “Goos-Hӓnchen shift at the surface of the chiral negative refraction medium,” in Proceedings of the 2008 International workshop on metamaterials, Nanjing, China (Academic,2008), pp. 98–101.
[Crossref]

J.F. Zhou, J.F. Dong, N.B. Wang, T. Koschny, M. Kafesaki, and C.M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Academic, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of a light beam propagating through the uniaxial anisotropic chiral slab placed in free space.
Fig. 2
Fig. 2 For case (I), the phase refraction angle of RCP (a) and LCP (b) waves, the group refraction angle of RCP (c) and LCP (d) waves as a function of the angle of incidence θi for various κ.
Fig. 3
Fig. 3 For case (I), the reflectivity | R sp | 2 , | R pp | 2 (a, b) and the GH shift Δ sp /λ , Δ pp /λ (c, d) as a function of the angle of incidence θi for various κ.
Fig. 4
Fig. 4 For case (I), the GH shift Δ pp /λ of weak chirality (a) and strong chirality (b) as a function of the angle of incidence θi for various thickness d. The insets are the corresponding reflectivity.
Fig. 5
Fig. 5 For case (II), the phase refraction angle of RCP (a) and LCP (b) waves, the group refraction angle of RCP (c) and LCP (d) waves as a function of the angle of incidence θi for various κ.
Fig. 6
Fig. 6 For case (II), the reflectivity | R sp | 2 , | R pp | 2 (a, b) and the GH shift Δ sp /λ , Δ pp /λ (c, d) as a function of the angle of incidenceθi for various κ.
Fig. 7
Fig. 7 For case (II), the GH shift Δ pp /λ of weak chirality (a) and strong chirality (b) as a function of the angle of incidence θi for various thickness d. The insets are the corresponding reflectivity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D= ε ¯ ¯ ε 0 E+i κ ¯ ¯ ε 0 μ 0 H, B= μ ¯ ¯ μ 0 Hi κ ¯ ¯ ε 0 μ 0 E,
ε ¯ ¯ =( ε t 0 0 0 ε t 0 0 0 ε z ), μ ¯ ¯ =( μ t 0 0 0 μ t 0 0 0 μ z ), κ ¯ ¯ =( 0 0 0 0 0 0 0 0 κ ).
k R( L ) = k 0 ε t μ t cos 2 θ R( L ) + sin 2 θ R( L ) / A R( L ) ,
( M 11 M 12 M 21 e i k Rz d M 22 e i k Rz d M 21 M 22 M 11 e i k Rz d M 12 e i k Rz d M 31 M 32 M 41 e i k Lz d M 42 e i k Lz d M 41 M 42 M 31 e i k Lz d M 32 e i k Lz d )( E rs E rp E ts E tp )=( M 21 M 22 M 11 M 12 M 41 M 42 M 31 M 32 )( E is E ip ),
M 11 =( Y zR Y zL ) ε t ( k zR +ω μ t g 0 cos θ i ), M 12 =( Y zR Y zL ) Y zL μ t ( g 0 k zR ω ε t cos θ i ), M 21 =( Y zR Y zL ) ε t ( k zR ω μ t g 0 cos θ i ), M 22 =( Y zR Y zL ) Y zL μ t ( g 0 k zR +ω ε t cos θ i ), M 31 =( Y zR Y zL ) ε t ( k zL +ω μ t g 0 cos θ i ), M 32 =( Y zR Y zL ) Y zR μ t ( g 0 k zL ω ε t cos θ i ), M 41 =( Y zR Y zL ) ε t ( k zL ω μ t g 0 cos θ i ), M 42 =( Y zR Y zL ) Y zR μ t ( g 0 k zL +ω ε t cos θ i ),
( M 11 M 12 M 21 e i k R z d M 22 e i k R z d M 21 M 22 M 11 e i k R z d M 12 e i k R z d M 31 M 32 M 41 e i k L z d M 42 e i k L z d M 41 M 42 M 31 e i k L z d M 32 e i k L z d ) ( R s s R s p R p s R p p T s s T s p T p s T p p ) = ( M 21 M 22 M 11 M 12 M 41 M 42 M 31 M 32 ) .
Δ a b = ϕ a b k x = ϕ a b θ i θ i k x = 1 k i cos θ i ϕ a b θ i .
θ g R ( L ) = arc tan ( tan θ R ( L ) A R ( L ) ) .

Metrics