Abstract

High aspect ratio free-standing Al-doped ZnO (AZO) nanopillars and nanotubes were fabricated using a combination of advanced reactive ion etching and atomic layer deposition (ALD) techniques. Prior to the pillar and tube fabrication, AZO layers were grown on flat silicon and glass substrates with different Al concentrations at 150-250 °C. For each temperature and Al concentration the ALD growth behavior, crystalline structure, physical, electrical and optical properties were investigated. It was found that AZO films deposited at 250 °C exhibit the most pronounced plasmonic behavior with the highest plasma frequency. During pillar fabrication, AZO conformally passivates the silicon template, which is characteristic of typical ALD growth conditions. The last step of fabrication is heavily dependent on the selective chemistry of the SF6 plasma. It was shown that silicon between AZO structures can be selectively removed with no observable influence on the ALD deposited coatings. The prepared free-standing AZO structures were characterized using Fourier transform infrared spectroscopy (FTIR). The restoration of the effective permittivities of the structures reveals that their anisotropy significantly deviates from the effective medium approximation (EMA) prognoses. It suggests that the permittivity of the AZO in tightly confined nanopillars is very different from that of flat AZO films.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High aspect ratio titanium nitride trench structures as plasmonic biosensor

E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko
Opt. Mater. Express 7(11) 4171-4182 (2017)

Engineering the structural, plasmonic, and optical properties of multilayered aluminum-doped zinc oxide metamaterial grown by pulsed laser deposition

Priscilla Kelly, Wenrui Zhang, Mingzhao Liu, and Lyuba Kuznetsova
Appl. Opt. 58(21) 5681-5686 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
    [Crossref] [PubMed]
  2. O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
    [Crossref] [PubMed]
  3. D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
    [Crossref]
  4. H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
    [Crossref]
  5. P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
    [Crossref]
  6. T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
    [Crossref]
  7. Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
    [Crossref]
  8. T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, and I. Terasaki, “Atomic layer deposition of Al-doped ZnO thin films,” J. Vac. Sci. Technol. A 31, 01A109 (2013).
    [Crossref]
  9. E. B. Pollock and R. J. Lad, “Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 32(4), 041516 (2014).
    [Crossref]
  10. A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
    [Crossref]
  11. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  12. A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
    [Crossref] [PubMed]
  13. C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
    [Crossref] [PubMed]
  14. S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
    [Crossref]
  15. P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators B Chem. 134(2), 654–659 (2008).
    [Crossref]
  16. H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
    [Crossref]
  17. S.-K. Kim and J.-Y. Son, “Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects,” Electrochem. Solid-State Lett. 12(2), J17–J19 (2009).
    [Crossref]
  18. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref] [PubMed]
  19. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  20. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
    [Crossref]
  21. J. Haas and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
    [Crossref] [PubMed]
  22. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  23. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
    [Crossref]
  24. V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
    [Crossref]
  25. M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. Mater. Express 5(2), 340–352 (2015).
    [Crossref]
  26. M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
    [Crossref] [PubMed]
  27. J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
    [Crossref]
  28. J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
    [Crossref] [PubMed]
  29. W. Cai and V. Shalaev, Optical Metamaterials (Springer, 2010).
  30. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  31. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
    [Crossref] [PubMed]
  32. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012(2012), 452502 (2012).
    [Crossref]
  33. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  34. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [Crossref] [PubMed]
  35. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  36. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  37. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(1), A96–A110 (2013).
    [Crossref] [PubMed]
  38. S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
    [Crossref] [PubMed]
  39. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  40. Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
    [Crossref] [PubMed]
  41. E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
    [Crossref]
  42. Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
    [Crossref] [PubMed]
  43. P. Zaumseil, “High-resolution characterization of the forbidden Si 200 and Si 222 reflections,” J. Appl. Cryst. 48(Pt 2), 528–532 (2015).
    [Crossref] [PubMed]
  44. M. Birkholz, “Thin Film Analysis by X-Ray Scattering,” in X-Ray Spectrometry (Wiley, 2005), chap. 3.
  45. M. Latzel, M. Göbelt, G. Brönstrup, C. Venzago, S. W. Schmitt, G. Sarau, and S. H. Christiansen, “Modeling the dielectric function of degenerately doped ZnO: Al thin films grown by ALD using physical parameters,” Opt. Mater. Express 5(9), 1979–1990 (2015).
    [Crossref]
  46. P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55(11), 2993–2997 (2016).
    [Crossref] [PubMed]
  47. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
    [Crossref]
  48. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
    [Crossref]
  49. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Lond. 67B(10), 775–782 (1954).
    [Crossref]
  50. C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Opt. Acta Int. J. Opt. 18(6), 415–423 (1971).
    [Crossref]
  51. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).
  52. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  53. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
    [Crossref]
  54. S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
    [Crossref]
  55. D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005).
    [Crossref] [PubMed]
  56. S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
    [Crossref]

2016 (10)

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

J. Haas and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

P. Kelly, M. Liu, and L. Kuznetsova, “Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique,” Appl. Opt. 55(11), 2993–2997 (2016).
[Crossref] [PubMed]

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

2015 (8)

M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. Mater. Express 5(2), 340–352 (2015).
[Crossref]

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

M. Latzel, M. Göbelt, G. Brönstrup, C. Venzago, S. W. Schmitt, G. Sarau, and S. H. Christiansen, “Modeling the dielectric function of degenerately doped ZnO: Al thin films grown by ALD using physical parameters,” Opt. Mater. Express 5(9), 1979–1990 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415–2430 (2015).
[Crossref]

P. Zaumseil, “High-resolution characterization of the forbidden Si 200 and Si 222 reflections,” J. Appl. Cryst. 48(Pt 2), 528–532 (2015).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

2014 (5)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

E. B. Pollock and R. J. Lad, “Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 32(4), 041516 (2014).
[Crossref]

2013 (3)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(1), A96–A110 (2013).
[Crossref] [PubMed]

2012 (6)

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
[Crossref] [PubMed]

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

2011 (1)

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

2010 (3)

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (3)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

S.-K. Kim and J.-Y. Son, “Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects,” Electrochem. Solid-State Lett. 12(2), J17–J19 (2009).
[Crossref]

2008 (2)

P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators B Chem. 134(2), 654–659 (2008).
[Crossref]

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

2007 (1)

2005 (1)

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005).
[Crossref] [PubMed]

2004 (2)

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

1999 (1)

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

1997 (1)

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

1971 (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Opt. Acta Int. J. Opt. 18(6), 415–423 (1971).
[Crossref]

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

1954 (2)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Lond. 67B(10), 775–782 (1954).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Artigas, D.

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005).
[Crossref] [PubMed]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Bae, K.

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

Bahoura, M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Baik, S. J.

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

Banerjee, P.

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

Basov, D. N.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Blazek, D.

Boltasseva, A.

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bonner, C. E.

Brönstrup, G.

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Cada, M.

Caldwell, J. D.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Capretti, A.

Cerutti, L.

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Cheaito, R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Cho, W. Y.

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

Choi, H.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Chrisey, D. B.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Christian, R.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Christiansen, S. H.

Crovetto, A.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

Dal Negro, L.

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dewalt, C. J.

Dhakal, T.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Ding, S.-J.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fainman, Y.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Gabriel, C. J.

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Opt. Acta Int. J. Opt. 18(6), 415–423 (1971).
[Crossref]

Geng, Y.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

George, S. M.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Glembocki, O. J.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Glimore, C. M.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Göbelt, M.

Grimes, C. A.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Haas, J.

J. Haas and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Hamilton, T.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Hansen, O.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

He, H.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hirano, M.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Hopkins, P. E.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Horwitz, J. S.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Hosono, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Hou, Q.

Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
[Crossref] [PubMed]

Hussain, R.

Ihara, K.

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(1), A96–A110 (2013).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jensen, F.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Jonasz, M.

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Kafafi, Z. H.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kamiya, T.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Kelly, P.

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kim, H.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kim, H.-M.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kim, K.-B.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kim, S.-H.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kim, S.-K.

S.-K. Kim and J.-Y. Son, “Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects,” Electrochem. Solid-State Lett. 12(2), J17–J19 (2009).
[Crossref]

Kinsey, N.

Kitamura, R.

Kivshar, Y. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Kjær, D.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

Kruk, S. S.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Kudryavtsev, K. E.

Kuznetsova, L.

Kwon, J.-Y.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Lad, R. J.

E. B. Pollock and R. J. Lad, “Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 32(4), 041516 (2014).
[Crossref]

Larsen, P. V.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Latzel, M.

Lavrinenko, A. V.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Lee, C. H.

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

Lee, D.-J.

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Lee, S. B.

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

Lee, W.-J.

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Lim, K. S.

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

Lin, S.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Lindhard, J. M.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Litchinitser, N. M.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, M.

Liu, Z.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Lu, H.-L.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Malagari, S. D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Mar, M. D.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Meng, F.

Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
[Crossref] [PubMed]

Minami, T.

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

Miyata, T.

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

Mizaikoff, B.

J. Haas and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Molesky, S.

Morozov, S. V.

Moss, T. S.

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Lond. 67B(10), 775–782 (1954).
[Crossref]

Mundle, R. M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Murata, H.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Myong, S. Y.

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

N’Tsame Guilengui, V.

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nandur, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Nath, R. K.

P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators B Chem. 134(2), 654–659 (2008).
[Crossref]

Nedoluha, A.

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Opt. Acta Int. J. Opt. 18(6), 415–423 (1971).
[Crossref]

Neshev, D. N.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Noginov, M. A.

Noginova, N.

Nomura, K.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

O’Brien, K.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Ottsen, T. S.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

Owrutsky, J. C.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Panah, M. E.

Pandraud, G.

Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
[Crossref] [PubMed]

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Paulose, M.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pilon, L.

Piqué, A.

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Pistora, J.

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollock, E. B.

E. B. Pollock and R. J. Lad, “Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 32(4), 041516 (2014).
[Crossref]

Post, K. W.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Postava, K.

Pradhan, A. K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Prayakarao, S.

Pshenay-Severin, E.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Reinecke, T. L.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Riley, C. T.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Robbins, S.

Rodriguez, J. B.

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Rubloff, G. W.

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

Sahay, P. P.

P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators B Chem. 134(2), 654–659 (2008).
[Crossref]

Santiago, K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Sarau, G.

Sarro, P. M.

Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
[Crossref] [PubMed]

Sato, H.

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

Schmitt, S. W.

Schou, J.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

Semenova, E. S.

Shalaev, V. M.

S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V. M. Shalaev, U. B. Wiesner, C. E. Bonner, R. Hussain, N. Noginova, and M. A. Noginov, “Gyroidal titanium nitride as nonmetallic metamaterial,” Opt. Mater. Express 5(6), 1316–1322 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Sharma, A.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Shkondin, E.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Sirbuly, D. J.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Siroky, P.

Skuza, J. R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Smalley, J. S. T.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Son, J.-Y.

S.-K. Kim and J.-Y. Son, “Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects,” Electrochem. Solid-State Lett. 12(2), J17–J19 (2009).
[Crossref]

Song, K. D.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Stamate, E.

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Sun, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
[Crossref] [PubMed]

Sun, Q.-Q.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

Takayama, O.

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

M. E. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
[Crossref] [PubMed]

Taliercio, T.

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Tanaka, H.

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

Tang, H.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Tischler, J. G.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Torner, L.

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005).
[Crossref] [PubMed]

Tournié, E.

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Vanhart, D.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Varghese, O. K.

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Venzago, C.

Vurgaftman, I.

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

Wang, D.

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Wang, Y.

Wasserman, D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Westgate, C. R.

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

Wiesner, U. B.

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Wong, Z. J.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xiao, B.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Xie, Z.-Y.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Xu, S.-S.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Ye, Z.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Zaumseil, P.

P. Zaumseil, “High-resolution characterization of the forbidden Si 200 and Si 222 reflections,” J. Appl. Cryst. 48(Pt 2), 528–532 (2015).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, D. W.

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Zhang, X.

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zhao, B.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Zheng, Y.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Zhong, Y.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Zhou, J.

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Zhu, L.

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

ACS Photonics (1)

J. Sun, N. M. Litchinitser, and J. Zhou, “Indefinite by Nature: From Ultraviolet to Terahertz,” ACS Photonics 1(4), 293–303 (2014).
[Crossref]

Adv. Funct. Mater. (1)

D.-J. Lee, H.-M. Kim, J.-Y. Kwon, H. Choi, S.-H. Kim, and K.-B. Kim, “Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

J. Haas and B. Mizaikoff, “Advances in mid-infrared spectroscopy for chemical analysis,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 9(1), 45–68 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. N’Tsame Guilengui, L. Cerutti, J. B. Rodriguez, E. Tournié, and T. Taliercio, “Localized surface plasmon resonances in highly doped semiconductors nanostructures,” Appl. Phys. Lett. 101(16), 161113 (2012).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

ECS J. Solid State Sci. Technol. (1)

Y. Geng, Z.-Y. Xie, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, and D. W. Zhang, “Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition,” ECS J. Solid State Sci. Technol. 1(3), N45–N48 (2012).
[Crossref]

Electrochem. Solid-State Lett. (1)

S.-K. Kim and J.-Y. Son, “Epitaxial ZnO Thin Films for the Application of Ethanol Gas Sensor: Thickness and Al-Doping Effects,” Electrochem. Solid-State Lett. 12(2), J17–J19 (2009).
[Crossref]

J. Appl. Cryst. (1)

P. Zaumseil, “High-resolution characterization of the forbidden Si 200 and Si 222 reflections,” J. Appl. Cryst. 48(Pt 2), 528–532 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (2)

H. Kim, C. M. Glimore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

P. Banerjee, W.-J. Lee, K. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010).
[Crossref]

J. Nanophotonics (1)

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Crovetto, T. S. Ottsen, E. Stamate, D. Kjær, J. Schou, and O. Hansen, “On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering,” J. Phys. D Appl. Phys. 49(29), 295101 (2016).
[Crossref]

J. Vac. Sci. Technol. A (4)

E. B. Pollock and R. J. Lad, “Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 32(4), 041516 (2014).
[Crossref]

H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO : Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A 22(4), 1757–1762 (2004).
[Crossref]

T. Dhakal, D. Vanhart, R. Christian, A. Nandur, A. Sharma, and C. R. Westgate, “Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition,” J. Vac. Sci. Technol. A 30(2), 021202 (2012).
[Crossref]

E. Shkondin, O. Takayama, J. M. Lindhard, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko, “Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition,” J. Vac. Sci. Technol. A 34(3), 31605 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material,” Jpn. J. Appl. Phys. 36(8), 1078–1081 (1997).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mater. Lett. (1)

S. Lin, H. Tang, Z. Ye, H. He, Y. Zheng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Mater. Lett. 62(4–5), 603–606 (2008).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(5), 461–468 (2014).
[Crossref]

Nano Converg (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg 1(1), 14 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

Q. Hou, F. Meng, and J. Sun, “Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition,” Nanoscale Res. Lett. 8(1), 144 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Huang, G. Pandraud, and P. M. Sarro, “The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays,” Nanotechnology 23(48), 485306 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

S. S. Kruk, Z. J. Wong, E. Pshenay-Severin, K. O’Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, “Magnetic hyperbolic optical metamaterials,” Nat. Commun. 7, 11329 (2016).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

J. D. Caldwell, I. Vurgaftman, J. G. Tischler, O. J. Glembocki, J. C. Owrutsky, and T. L. Reinecke, “Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics,” Nat. Nanotechnol. 11(1), 9–15 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nat. Nanotechnol. 4(9), 592–597 (2009).
[Crossref] [PubMed]

Nature (2)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Acta Int. J. Opt. (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Opt. Acta Int. J. Opt. 18(6), 415–423 (1971).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (4)

Phys. Rev. (1)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Phys. Rev. Lett. (1)

D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys. Rev. Lett. 94(1), 013901 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Proc. Phys. Soc. Lond. (1)

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc. Lond. 67B(10), 775–782 (1954).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (1)

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators B Chem. 134(2), 654–659 (2008).
[Crossref]

Small (1)

C. T. Riley, J. S. T. Smalley, K. W. Post, D. N. Basov, Y. Fainman, D. Wang, Z. Liu, and D. J. Sirbuly, “High-Quality, Ultraconformal Aluminum-Doped Zinc Oxide Nanoplasmonic and Hyperbolic Metamaterials,” Small 12(7), 892–901 (2016).
[Crossref] [PubMed]

Other (5)

T. Tynell, H. Yamauchi, M. Karppinen, R. Okazaki, and I. Terasaki, “Atomic layer deposition of Al-doped ZnO thin films,” J. Vac. Sci. Technol. A 31, 01A109 (2013).
[Crossref]

W. Cai and V. Shalaev, Optical Metamaterials (Springer, 2010).

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. Optoelectron. 2012(2012), 452502 (2012).
[Crossref]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

M. Birkholz, “Thin Film Analysis by X-Ray Scattering,” in X-Ray Spectrometry (Wiley, 2005), chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 ALD deposition conditions. a) Growth per cycle of Al2O3 ZnO and AZO for each temperature regime: 150 °C, 200 °C and 250 °C. b) Schematic drawing of deposited AZO layers and concept illustration of doping “D” number.
Fig. 2
Fig. 2 XPS investigation of AZO layers. a) The typical survey scan of AZO/ZnO. b) High-resolution scan for Al2p region for AZO/ZnO samples prepared at 250 °C. c) Measured Al concentration in AZO films prepared at three temperatures: 150 °C, 200 °C and 250 °C. d) Deviation of the measured Al at. % concentration from the theoretical estimation in case of 250 °C deposition temperature.
Fig. 3
Fig. 3 Morphology inspection. a) SEM and b) AFM images (500 nm × 500 nm) of flat AZO samples prepared at 250 °C.
Fig. 4
Fig. 4 XRD analysis. a) Diffraction patterns of all AZO/ZnO samples prepared at 250°C shown in logarithmic scale. b) Typical area around (002) and (101) ZnO crystal orientations with applied Lorentzian fit function. c) ZnO lattice dimensions constants a and c as a function of Al at. % concentration (samples deposited at 250 °C). d) Estimated grains size as a function of Al concentration in the samples (samples corresponding to all three deposition temperatures 150°C, 200°C and 250°C).
Fig. 5
Fig. 5 The resistivity of all of the prepared AZO/ZnO samples as a) function of Al at. % concentration and b) resistivity vs. grains size for AZO samples.
Fig. 6
Fig. 6 Optical properties of the AZO/ZnO thin films prepared at 250 °C. a) Real ε1 and imaginary ε2 parts of permittivity. b) Transmission spectra with a small absorption edge shift (shown in the inset). c) Absorption coefficient. d) The plot of (αhν)2 versus photon energy (Tauc plot). e) Optical bandgap as a function of Al concentration.
Fig. 7
Fig. 7 Schematics of the fabrication flow. a) Home-made SOI substrates. b) Deep-UV lithography. Resist spin coating, baking, exposure and developing. c) DRIE etching, fabrication of initial Si template. d) ALD deposition of D25 AZO at 250 °C. Partial deposition will lead to fabrication of tubes, while complete filling will create full pillars. e) Removal of the top AZO layer by Ar+ sputtering. f) Silicon host removal using conventional RIE process.
Fig. 8
Fig. 8 Bird-eye-view SEM images of the prepared structures: a) AZO pillars and b) AZO tubes. The insets show an enlarged view of the metamaterials.
Fig. 9
Fig. 9 TEM inspection. a) High-resolution TEM image of the produced pillars. b) SAED pattern of AZO D25 pillar. c) and d) are dark field images: c) is the image at low magnification, d) are enlarge images of the same area with different positions of the object aperture. e) EDX elemental mapping and HAADF imaging of AZO nanopillar.
Fig. 10
Fig. 10 a) Measured and fitted reflectance spectra for the DSP Si substrate together with b) its retrieved permittivity. c) Measured and fitted reflectance spectra for the 100 nm thick D25 AZO film together with d) its retrieved permittivity.
Fig. 11
Fig. 11 Measured and fitted reflectance spectra for (a) Air/AZO ordinary, (b) Air/AZO extraordinary, (c) Si/AZO ordinary and (d) Si/AZO extraordinary cases.
Fig. 12
Fig. 12 Fitted real and imaginary part of effective ordinary (solid line) and extraordinary (dashed line) permittivities, εo and εe, for (a,c) Air/AZO and (b,d) Si/AZO structures, as well as effective permittivities calculated by effective medium approximation. The inset is the scanning electron microscope image of the measured Air/AZO and Si/AZO structures, respectively. The scale bars in both insets are 1 μm.

Tables (6)

Tables Icon

Table 1 Recipe for one AZO macrocycle.

Tables Icon

Table 2 Screened plasma frequencies from 250 °C AZO thin films retrieved from extrapolated ε1(λ) functions.

Tables Icon

Table 3 DRIE parameters for Si template fabrication.

Tables Icon

Table 4 Retrieved dielectric function parameters for the Si substrate.

Tables Icon

Table 5 Retrieved dielectric function parameters for 100nm AZO film.

Tables Icon

Table 6 Retrieved dielectric function parameters for Air/AZO and Si/AZO pillar metamaterials. (units for plasma frequencies, damping and Lorentzian resonance frequencies are all in THz)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

nλ=2dsinθ
1 d 2 = 4 3 ( h 2 +hk+ k 2 a 2 )+ l 2 c 2 ,
D= Kλ β INT cosθ , where β INT = β observed INT β istrumental INT .
r p r s =tan( Ψ ) e iΔ ,
αln( T )
( αhν ) 2 ( hν E g ).
ε( ω )= ε ( 1 ω p 2 ω 2 +iωγ )+ j S j ω f,j 2 ω f,j 2 ω 2 iω Γ j
ε o EMA = ( 1+f ) ε m ε d +( 1f ) ε d 2 ( 1+f ) ε d +( 1f ) ε m
ε e EMA =f ε m +( 1f ) ε d

Metrics