Abstract

Random laser actions from a dye pyrromethene-597(PM597)-doped CuSO4 mixture infiltrated in glass capillaries are demonstrated. Discrete lasing modes are observed at the complete solid angle. Low threshold and variable emission wavelength of the random lasers are realized by adjusting the concentration of CuSO4 in the mixtures. With the exception of the multiple scattering of light caused by micro-crystals dispersed in the mixtures, another underlying physical mechanism for tuning random laser is closely related to energy transfer between the molecules of PM597 and CuSO4. Meanwhile, we also demonstrate the realization of a plasmonic random laser by doping Au nanoparticles (NPS) in the PM597-doped CuSO4 mixture. We find that the localized surface plasmon resonance of Au NPS lowers the threshold, increases the emission intensity and reduces the number of the lasing modes of the random lasers. Our results indicate that CuSO4 paves a new avenue towards designing low-cost photonic devices based on the random lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced lasing from organic gain medium by Au nanocube@SiO2 core-shell nanoparticles with optimal size

Shuya Ning, Naming Zhang, Hua Dong, Xun Hou, Fanghui Zhang, and Zhaoxin Wu
Opt. Mater. Express 8(10) 3014-3022 (2018)

Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles

Lei Wang, Yuan Wan, Lijie Shi, Haizheng Zhong, and Luogen Deng
Opt. Express 24(16) 17593-17602 (2016)

Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes

Jianlong Wang, Yating Zhang, Mingxuan Cao, Xiaoxian Song, Yongli Che, Haiting Zhang, Heng Zhang, and Jianquan Yao
Appl. Opt. 55(21) 5702-5706 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835 (1968).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  3. J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
    [Crossref]
  4. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  5. C. R. Lee, S. H. Lin, J. W. Guo, J. D. Lin, H. L. Lin, Y. C. Zheng, C. L. Ma, C. T. Horng, H. Y. Sun, and S. Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dyedoped liquid crystal cell,” Opt. Mater. Express 5(6), 1469–1481 (2015).
    [Crossref]
  6. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [Crossref]
  7. K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
    [Crossref] [PubMed]
  8. L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
    [Crossref]
  9. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  10. D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
    [Crossref]
  11. S. Y. Ning, H. Dong, N. M. Zhang, J. N. Zhao, and L. Ding, “Plasmonic enhancement of random lasing from dye-doped polymer film by bristled Ag/TiO2 composite nanowires,” Opt. Mater. Express 6(12), 3725–3732 (2016).
    [Crossref]
  12. G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  13. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing form dye-gold nanoparticles in polymer films: enhanced at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  14. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  15. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).
  16. X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
    [Crossref] [PubMed]
  17. T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
    [Crossref] [PubMed]
  18. T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S.T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowaires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
  19. Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
    [Crossref]
  20. Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
    [Crossref]
  21. L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
    [Crossref]
  22. V. V. Prosentsov, “Light Amplification and Scattering by Clusters Made of Small Active Particles: The Local Perturbation Approach,” Physical Science International Journal 8(4), 1–11 (2015).
    [Crossref]
  23. V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
    [Crossref] [PubMed]
  24. D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
    [Crossref]
  25. R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
    [Crossref]
  26. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
    [Crossref] [PubMed]
  27. H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
    [Crossref] [PubMed]

2016 (5)

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref]

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

S. Y. Ning, H. Dong, N. M. Zhang, J. N. Zhao, and L. Ding, “Plasmonic enhancement of random lasing from dye-doped polymer film by bristled Ag/TiO2 composite nanowires,” Opt. Mater. Express 6(12), 3725–3732 (2016).
[Crossref]

2015 (3)

V. V. Prosentsov, “Light Amplification and Scattering by Clusters Made of Small Active Particles: The Local Perturbation Approach,” Physical Science International Journal 8(4), 1–11 (2015).
[Crossref]

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

C. R. Lee, S. H. Lin, J. W. Guo, J. D. Lin, H. L. Lin, Y. C. Zheng, C. L. Ma, C. T. Horng, H. Y. Sun, and S. Y. Huang, “Electrically and thermally controllable nanoparticle random laser in a well-aligned dyedoped liquid crystal cell,” Opt. Mater. Express 5(6), 1469–1481 (2015).
[Crossref]

2012 (1)

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

2011 (2)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

2009 (1)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

2008 (2)

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

2007 (1)

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2001 (1)

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

2000 (2)

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
[Crossref]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1997 (1)

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835 (1968).

Andreasen, J.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Asatryan, A. A.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Banuelos, J.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Barna, V.

Bartolino, R.

Botten, L. C.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Bour, D. P.

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

Burin, A. L.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

Byrne, M. A.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Cao, H.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Caputo, R.

Cerdán, L.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Chang, R. P. H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chang, S.

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

Costela, A.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Cui, Y. P.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing form dye-gold nanoparticles in polymer films: enhanced at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

De Luca, A.

Deng, L. G.

Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Ding, L.

Dong, H.

Elezzab, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Enciso, E.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Feng, Y. Y.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Fujita, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gao, J. G.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Gao, P. F.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Garcia-Moreno, I.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Ge, L.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Guo, J. W.

Ho, S. T.

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hofstetter, D.

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

Horng, C. T.

Hu, Z. J.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Huang, D. F.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Huang, S. Y.

Jiang, H. M.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Johnson, N. M.

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

Labonté, L.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Lagendijk, A.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lee, C. R.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835 (1968).

Levina, G.

R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
[Crossref]

Li, F. J.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Li, T. S.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Liang, Y. Y.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Lin, H. L.

Lin, J. D.

Lin, S. H.

Liu, B.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Liu, F.

Liu, S. Y.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Liu, X. Y.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Lopez-Arbeloa, I.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Lu, Y. Q.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Ma, C. L.

Martin, V.

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Matoba, T.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Ming, H.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Mosk, A. P.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Ning, S. Y.

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
[Crossref]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing form dye-gold nanoparticles in polymer films: enhanced at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Price, G. N.

Prosentsov, V. V.

V. V. Prosentsov, “Light Amplification and Scattering by Clusters Made of Small Active Particles: The Local Perturbation Approach,” Physical Science International Journal 8(4), 1–11 (2015).
[Crossref]

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

Romano, L. T.

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Scaramuzza, N.

Sebbah, P.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shang, Z. Z.

Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref]

Shi, F.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Stone, A. D.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Strangi, G.

Sun, H. Y.

Tanaka, K.

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Thornton, R. L.

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

Tjerkstra, R. W.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

Türeci, H. E.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Umeton, C.

van der Molen, K. L.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

Vanneste, C.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
[Crossref]

Versace, C.

Wang, C. K.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Wu, X.

Xie, K.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

Xu, M.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Xu, Z.

Yang, M.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Yang, M. C.

Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref]

Ye, L. H.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Yi, T.

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

Yin, L. C.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Zhai, T.

Zhang, D. G.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Zhang, N. M.

Zhang, Q. J.

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Zhang, X.

Zhao, J. N.

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zheng, Y. C.

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing form dye-gold nanoparticles in polymer films: enhanced at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Adv. Opt. Photonics (1)

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photonics 3(1), 88–127 (2011).
[Crossref]

Appl. Phys. Lett. (6)

G. D. Dice, S. Mujumdar, and A. Y. Elezzab, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticles-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing form dye-gold nanoparticles in polymer films: enhanced at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

D. Hofstetter, L. T. Romano, R. L. Thornton, D. P. Bour, and N. M. Johnson, “Characterization of intra-cavity reflections by Fourier transforming spectral data of optically pumped InGaN lasers,” Appl. Phys. Lett. 71(22), 3200–3202 (1997).
[Crossref]

R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000).
[Crossref]

J. Opt. (1)

Z. J. Hu, Y. Y. Liang, K. Xie, P. F. Gao, D. G. Zhang, H. M. Jiang, F. Shi, L. C. Yin, J. G. Gao, H. Ming, and Q. J. Zhang, “Gold nanoparticles-based plasmonic random fiber laser,” J. Opt. 17(3), 035001 (2015).
[Crossref]

Laser Phys. Lett. (2)

D. F. Huang, M. Xu, X. Y. Liu, M. Yang, T. Yi, C. K. Wang, T. S. Li, and S. Y. Liu, “Low threshold random lasing actions in natural biological membranes,” Laser Phys. Lett. 13(6), 065603 (2016).
[Crossref]

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Materials (Basel) (1)

Z. Z. Shang, M. C. Yang, and L. G. Deng, “Low-Threshold and High Intensity Random Lasing Enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref]

Nano Lett. (1)

X. Meng, K. Fujita, S. Murai, T. Matoba, and K. Tanaka, “Plasmonically controlled lasing resonance with metallic-dielectric core-shell nanoparticles,” Nano Lett. 11(3), 1374–1378 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Cerdán, E. Enciso, V. Martin, J. Banuelos, I. Lopez-Arbeloa, A. Costela, and I. Garcia-Moreno, “FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[Crossref]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in srongly media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

Phys. Chem. A (1)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. Cao, J. Y. Xu, S. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1985–1989 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87(21), 215503 (2001).
[Crossref] [PubMed]

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98(14), 143901 (2007).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Physical Science International Journal (1)

V. V. Prosentsov, “Light Amplification and Scattering by Clusters Made of Small Active Particles: The Local Perturbation Approach,” Physical Science International Journal 8(4), 1–11 (2015).
[Crossref]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835 (1968).

Other (1)

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S.T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowaires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experiment setup for measuring random lasing. (b) TEM images of Au NPS with average diameter 50 nm. (c) Schematic diagram of the ingredients in sample. (d) The normalized absorption intensity of PM597, Au NPs, CuSO4 and fluorescence intensity of PM597.
Fig. 2
Fig. 2 The evolution of emission spectra of (a) PM597 and (b) PM597-doped CuSO4 (0.1 mL) at different pump energies. (c) Dependence of emission intensity on the pump energies for PM597 and PM597-doped CuSO4 (0.1 mL). (d) Single shot lasing spectra of PM597-doped CuSO4 (0.1 mL) at the pump energy of 16.65 μJ .
Fig. 3
Fig. 3 (a) Emission spectra of PM597-doped CuSO4 (0.25 mL) recorded at different detection angles. (b) Dependence of peak emission intensity on the detection angles for PM597-doped CuSO4 (0.25 mL).
Fig. 4
Fig. 4 (a) Emission intensity as a function of the pump energy for PM597-doped CuSO4 (0.1, 0.2 and 0.3 mL). (b) Ensemble-averaged Power Fourier Transform (PFT) analysis for single-shot emission spectra (sum = 50) of PM597-doped CuSO4 (0.1, 0.2 and 0.3 mL) at the pump energy of 12.00 μJ . Inset: Two individual single-shot emission spectra recorded for the PM597-doped CuSO4 (0.1, 0.2 and 0.3 mL) at the pump energy of 12.00 μJ .
Fig. 5
Fig. 5 The evolution of emission spectra of PM597-doped CuSO4 (0.2 mL) (a) without and (b) with Au NPS at different pump energies. (c) Dependence of emission intensity on the pump energies for PM597-doped CuSO4 (0.2 mL) without and with Au NPS. (d) Ensemble-averaged PFT analysis for single-shot emission spectra (sum = 50) of PM597-doped CuSO4 (0.2 mL) without and with Au NPS at the pump energy of 12.75 μJ . Inset: Two individual single-shot emission spectra recorded for the PM597- doped CuSO4 (0.2 mL) without and with Au NPS at the pump energy of 12.75 μJ .
Fig. 6
Fig. 6 Contour maps of shot-to-shot lasing spectra at different pump pulses for PM597-doped CuSO4 (0.2 mL) (a) without and (b) with Au NPS at the pump energy of 13.10 μJ .

Tables (1)

Tables Icon

Table 1 The ingredient of all the samples.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q= 2cnL 3 ε m +Re( ε s ε m ) l( ckDlnR ) ε m Re( ε s ε m ) .
d m = nLm /π .

Metrics