Abstract

We report a compact, simultaneous actively Q-switched orthogonally polarized dual-wavelength laser realized with a Yb3+:GdMgB5O10 (Yb:GMB) crystal for the first time. The two wavelengths of the laser were 1059.2 nm and 1060.8 nm. No additional optical elements were needed to balance the gain-to-loss of the dual-wavelength emissions. A maximum output power of 2.5 W was obtained at a repetition rate of 30 kHz, where the output powers of wavelengths at 1059.2 nm and 1060.8 nm were 1.23 W and 1.27 W, respectively. For a repetition rate of 10 kHz, the narrowest pulse width of 36 ns was achieved, corresponding to the highest peak power of 4.59 kW. The advantages of the good absorption efficiency, the natural balanced output powers of two wavelengths and the ideal average output power show that the Yb:GMB is an efficient and promising gain medium for generating the orthogonally polarized dual-wavelength laser.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

15 August 2017: A typographical correction was made to Ref. 12.


OSA Recommended Articles
Simultaneous multi-wavelength oscillation of Nd laser around 1.3 µm: A potential source for coherent terahertz generation

Ardhendu Saha, Aniruddha Ray, Sourabh Mukhopadhyay, Nandita Sinha, Prasanta Kumar Datta, and Pranab Kumar Dutta
Opt. Express 14(11) 4721-4726 (2006)

Passively Q-switched Nd:Sc0.2Y0.8SiO5 dual-wavelength laser with the orthogonally polarized output

S.D. Liu, L.H. Zheng, J.L. He, J. Xu, X.D. Xu, L.B. Su, K.J. Yang, B.T. Zhang, R.H. Wang, and X.M. Liu
Opt. Express 20(20) 22448-22453 (2012)

Q-switched 1329  nm Nd:CNGG laser

Kun Xiao, Bin Lin, Qiu-Lin Zhang, Dong-Xiang Zhang, Bao-hua Feng, Jing-Liang He, Huai-Jin Zhang, and Ji-Yang Wang
Appl. Opt. 54(23) 7071-7075 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [Crossref] [PubMed]
  2. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
    [Crossref]
  3. S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).
  4. S. Zhang and T. Bosch, “Orthogonally Polarized Lasers and their Applications,” Opt. Photonics News 18(5), 38 (2007).
    [Crossref]
  5. N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).
  6. F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
    [Crossref]
  7. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32(24), 4534–4551 (1993).
    [Crossref] [PubMed]
  8. R. Akbari, H. Zhao, and A. Major, “High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser,” Opt. Lett. 41(7), 1601–1604 (2016).
    [Crossref] [PubMed]
  9. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012).
    [Crossref] [PubMed]
  10. P. Zhang, Y. D. Tan, N. Liu, Y. Wu, and S. L. Zhang, “Phase difference in modulated signals of two orthogonally polarized outputs of a Nd:YAG microchip laser with anisotropic optical feedback,” Opt. Lett. 38(21), 4296–4299 (2013).
    [Crossref] [PubMed]
  11. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30(16), 2107–2109 (2005).
    [Crossref] [PubMed]
  12. R. Zhou, B. Zhang, X. Ding, Z. Cai, W. Wen, P. Wang, and J. Yao, “Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13(15), 5818–5824 (2005).
    [Crossref] [PubMed]
  13. B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009).
    [Crossref] [PubMed]
  14. Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
    [Crossref]
  15. H. Chen, Y. Huang, B. Li, W. Liao, G. Zhang, and Z. Lin, “Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser,” Opt. Lett. 40(20), 4659–4662 (2015).
    [Crossref] [PubMed]
  16. “A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).
  17. A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
    [Crossref]
  18. F. Lou, R. W. Zhao, J. L. He, Z. T. Jia, X. C. Su, Z. W. Wang, J. Hou, and B. T. Zhang, “Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber,” Photon. Res. 3(2), A25–A29 (2015).
    [Crossref]
  19. J. L. Xu, Y. X. Ji, Y. Q. Wang, Z. Y. You, H. Y. Wang, and C. Y. Tu, “Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber,” Opt. Express 22(6), 6577–6585 (2014).
    [Crossref] [PubMed]
  20. Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
    [Crossref]
  21. S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
    [Crossref]

2017 (1)

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

2016 (1)

2015 (3)

2014 (1)

2013 (1)

2012 (1)

2011 (1)

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

2010 (1)

S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).

2009 (1)

2007 (4)

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

S. Zhang and T. Bosch, “Orthogonally Polarized Lasers and their Applications,” Opt. Photonics News 18(5), 38 (2007).
[Crossref]

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

2005 (2)

2004 (1)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

1995 (1)

1993 (1)

1982 (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Akbari, R.

Basov, N. G.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Bosch, T.

S. Zhang and T. Bosch, “Orthogonally Polarized Lasers and their Applications,” Opt. Photonics News 18(5), 38 (2007).
[Crossref]

Brenier, A.

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

Cai, Z.

Chen, H.

Chen, T.

Chen, Y. F.

Chen, Y. S.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Cho, C. Y.

Dao, P. D.

Ding, X.

Ehret, G.

Farley, R. W.

Gubin, M. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

He, J. L.

Herault, E.

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Hou, J.

Huang, Y.

Huang, Y. J.

Huang, Y. P.

Huang, Y. S.

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Ji, Y. X.

Jia, Z. T.

Jiang, P.

Kawato, S.

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

Kiemle, C.

Kobayashi, T.

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

Kong, J.

Ku, M. L.

Li, B.

Li, J.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

Li, J. F.

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

Liao, W.

Lin, Z.

Lin, Z. B.

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Liu, N.

Lou, F.

Major, A.

Matsubara, S.

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

Meas, Y. L.

S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).

Nikitin, V. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Nikuchin, A. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Pallas, F.

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Petrovskii, V. N.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Protsenko, E. D.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Renger, W.

Roux, J. F.

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Shen, Y.

Simmet, G.

Su, K. W.

Su, X. C.

Sun, S. J.

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Tan, Y.

S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).

Tan, Y. D.

Tsai, S. W.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

Tu, C. Y.

J. L. Xu, Y. X. Ji, Y. Q. Wang, Z. Y. You, H. Y. Wang, and C. Y. Tu, “Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber,” Opt. Express 22(6), 6577–6585 (2014).
[Crossref] [PubMed]

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

Tyurikov, D. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

Ueda, T.

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

Vitrant, G.

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Wang, G. F.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Wang, H. Y.

Wang, P.

Wang, Y. Q.

Wang, Z. W.

Wen, W.

Wu, B.

Wu, Y.

Xu, J. L.

Yang, D.

Yao, J.

You, Z. Y.

Yuan, F. F.

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhang, B.

Zhang, B. T.

Zhang, G.

Zhang, L. Z.

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhang, P.

Zhang, S.

S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).

S. Zhang and T. Bosch, “Orthogonally Polarized Lasers and their Applications,” Opt. Photonics News 18(5), 38 (2007).
[Crossref]

Zhang, S. L.

Zhao, H.

Zhao, R. W.

Zhao, W.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhou, J.

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

Zhou, R.

Zhou, W. W.

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

Zhu, Z. J.

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

Appl. Opt. (2)

Appl. Phys. B (2)

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

“A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from a birefringent Yb3+-doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2), 323–328 (2007).

Appl. Phys. Lett. (2)

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q-switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[Crossref]

F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011).
[Crossref]

CrystEngComm (1)

Y. S. Huang, W. W. Zhou, S. J. Sun, F. F. Yuan, L. Z. Zhang, W. Zhao, G. F. Wang, and Z. B. Lin, “Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10 – a new laser material,” CrystEngComm 17(38), 7392–7397 (2015).
[Crossref]

Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highlysensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.- Mat. Nauk 46, 1573–1583 (1982).

J. Lumin. (1)

Y. S. Huang, F. Lou, S. J. Sun, F. F. Yuan, L. Z. Zhang, Z. B. Lin, and Z. Y. You, “Spectroscopy and laser performance of Yb3+:GdMgB5O10 crystal,” J. Lumin. 188, 7–11 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Matsubara, T. Ueda, S. Kawato, and T. Kobayashi, “Tsutomu Ueda, Sakae Kawato, and Takao Kobayshi, “Highly Efficient Continuous-Wave Laser Oscillation in Microchip Yb:YAG Laser at Room Temperature,” Jpn. J. Appl. Phys. 46(7), L132–L134 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Photonics News (1)

S. Zhang and T. Bosch, “Orthogonally Polarized Lasers and their Applications,” Opt. Photonics News 18(5), 38 (2007).
[Crossref]

Photon. Res. (1)

Sci. Technol. (1)

S. Zhang, Y. Tan, and Y. L. Meas, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Sci. Technol. 21, 054016 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the experimental setup for the orthogonally polarized dual-wavelength Q-switched Yb:GMB laser.
Fig. 2
Fig. 2 Absorbed pump power and absorption efficiency as a function of the incident pump power for Yb:GMB crystal.
Fig. 3
Fig. 3 (a) Stark splitting of the 2F5 / 2 and 2I7 / 2 levels of Yb3+ in GMB crystal. (b) The particle populations of ground-state sublevels of the Yb3+ ion versus different temperatures.
Fig. 4
Fig. 4 (a) Average output power and (b) Pulse energy of laser versus absorbed pump power for different pulse repetition.
Fig. 5
Fig. 5 Dependence of the pulse width on the absorbed pump power. The inset shows the temporal pulse profile of the 36 ns pulse.
Fig. 6
Fig. 6 (a) Optical spectrum of orthogonally polarized dual-wavelength laser at the absorbed pump power of 6.67 W. (b) The output powers versus the incident pump power for the dual-wavelengths at 1059.2 and 1060.8 nm.
Fig. 7
Fig. 7 Optical spectrum of the simultaneous orthogonally polarized multi-wavelength laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N i N = exp ( E i / k T ) i exp ( E i / k T ) .

Metrics