Abstract

Thermally-induced nucleation and growth of secondary crystalline phases in a parent glass matrix results in the formation of a glass ceramic. Localized, spatial control of the number density and size of the crystal phases formed can yield ‘effective’ properties defined approximately by the local volume fraction of each phase present. With spatial control of crystal phase formation, the resulting optical nanocomposite exhibits gradients in physical properties including gradient refractive index (GRIN) profiles. Micro-structural changes quantified via Raman spectroscopy and X-ray diffraction have been correlated to calculated and measured refractive index modification verifying formation of an effective refractive index, neff, with the formation of nanocrystal phases created through thermal heat treatment in a multi-component chalcogenide glass. These findings have been used to define experimental laser irradiation conditions required to induce the conversion from glass to glass ceramic, verified using simulations to model the thermal profiles needed to substantiate the gradient in nanocrystal formation. Pre-nucleated glass underwent spatially varying nanocrystal growth using bandgap laser heating, where the laser beam’s thermal profile yielded a gradient in both resulting crystal phase formation and refractive index. The changes in the nanocomposite’s micro-Raman signature have been quantified and correlated to crystal phases formed, the material’s index change and the resulting GRIN profile. A flat, three-dimensional (3D) GRIN nanocomposite focusing element created through use of this approach, is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index patterning of infrared glass ceramics through laser-induced vitrification [Invited]

Myungkoo Kang, Laura Sisken, Justin Cook, Cesar Blanco, Martin C. Richardson, Ilya Mingareev, and Kathleen Richardson
Opt. Mater. Express 8(9) 2722-2733 (2018)

Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses

M. Olivier, J.C. Tchahame, P. Němec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal
Opt. Mater. Express 4(3) 525-540 (2014)

CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering

A. Chiasera, C. Macchi, S. Mariazzi, S. Valligatla, L. Lunelli, C. Pederzolli, D.N. Rao, A. Somoza, R.S. Brusa, and M. Ferrari
Opt. Mater. Express 3(9) 1561-1570 (2013)

References

  • View by:
  • |
  • |
  • |

  1. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [Crossref] [PubMed]
  2. O. M. Efimov, L. B. Glebov, V. I. Smirnov, and L. Glebova, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” US 09/648,293, (2003).
  3. L. G. Atkinson, D. S. Kindred, D. T. Moore, and J. R. Zinter, “Negative abbe number radial gradient index relay and use of same,” US 08/017,034 (1994).
  4. T. H. Tomkinson, J. L. Bentley, M. K. Crawford, C. J. Harkrider, D. T. Moore, and J. L. Rouke, “Rigid endoscopic relay systems: a comparative study,” Appl. Opt. 35(34), 6674–6683 (1996).
    [Crossref] [PubMed]
  5. D. Gibson, S. Bayya, and J. Sanghera, Homogeneous and Gradient Index (GRIN) Materials For Multi-Band IR Optics” in Classical Optics 2014 (Optical Society of America, 2014).
  6. D. Gibson, S. Bayya, J. Sanghera, V. Nguyen, D. Scribner, V. Maksimovic, J. Gill, A. Yi, J. Deegan, and B. Unger,”Layered chalcogenide glass structures for IR lenses” in SPIE 9070, Infrared Technology and Applications XL (2014).
  7. D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).
  8. S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.
  9. K. Richardson, J. David Musgraves, P. Wachtel, C. Rivero-Baleine, and T. Mayer, “Method of Forming an Optical Device and Optical Apparatus,” U.S. Patent No. 9,340,446 (17 May 2016).
  10. M. Dussauze, A. Lepicard, M. Bondu, V. Rodriguez, F. Adamietz, T. Cardinal, E. Fargin, and K. Richardson, Device and Method for Inducing by Thermal Poling a Spatially Controlled Refractive Index Gradient Inside an Amorphous Inorganic Material,” European Patent application #EP16176689.4 (28 June 2016).
  11. L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, and J. M. Stagaman, “Design of a gradient-index photographic objective,” Appl. Opt. 21(6), 993–998 (1982).
    [Crossref] [PubMed]
  12. V. Nguyen, S. Larouche, N. Landy, J. S. Lee, and D. R. Smith, “Quantitative comparison of gradient index and refractive lenses,” J. Opt. Soc. Am. A 29(11), 2479–2497 (2012).
    [Crossref] [PubMed]
  13. S. Houde-Walter and D. T. Moore, “Real-time index profile measurement during GRIN glass fabrication,” Appl. Opt. 27(3), 508–515 (1988).
    [Crossref] [PubMed]
  14. G. Beadie, J. S. Shirk, A. Rosenberg, P. A. Lane, E. Fleet, A. R. Kamdar, Y. Jin, M. Ponting, T. Kazmierczak, Y. Yang, A. Hiltner, and E. Baer, “Optical properties of a bio-inspired gradient refractive index polymer lens,” Opt. Express 16(15), 11540–11547 (2008).
    [PubMed]
  15. R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
    [Crossref] [PubMed]
  16. Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
    [Crossref]
  17. M. A. Pickering, R. L. Taylor, and D. T. Moore, “Gradient infrared optical material prepared by a chemical vapor deposition process,” Appl. Opt. 25(19), 3364–3372 (1986).
    [Crossref] [PubMed]
  18. J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
    [Crossref]
  19. S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
    [Crossref] [PubMed]
  20. L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
    [Crossref]
  21. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref] [PubMed]
  22. P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
    [Crossref]
  23. K. Palanjyan, R. Vallee, and T. Galstian, ”Photoinduced GRIN lens formation in chalcogenide Ge-As-S thin films,” in Proc. of SPIE9288 (SPIE, 2014).
  24. A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
    [Crossref]
  25. J. Choi, “Femtosecond laser written diffractive optical elements and their applications,” PhD Dissertation, College of Optics, the University of Central Florida (2010).
    [Crossref]
  26. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
    [Crossref] [PubMed]
  27. A. K. Buff, “A Study of Crystallization Behavior in Phase Separated Chalcogenide Glasses,” MS Thesis, Department of Materials Science and Engineering, University of Central Florida (2016).
  28. A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chama, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase-separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B. (2017).
  29. W. Holand and G. H. Beall, Glass Ceramic Technology (Wiley, 2012).
  30. N. C. Anheier and H. A. Qiao, ”A mid-infrared prism coupler for bulk and thin film optical analysis,” in Proc. of SPIE8016 (SPIE, 2011).
    [Crossref]
  31. H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
    [Crossref]
  32. H. A. Qiao, K. A. Lipschultz, N. C. Anheier, and J. S. McCloy, “Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS,” Opt. Lett. 37(9), 1403–1405 (2012).
    [Crossref] [PubMed]
  33. N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
    [Crossref] [PubMed]
  34. R. J. King and S. P. Talim, “A Comparison of Thin Film Measurement by Guided Waves, Ellipsometry and Reflectometry,” Optica Acta: International Journal of Optics 28(8), 1107–1123 (1981).
    [Crossref]
  35. J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).
  36. S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65(2), 167–180 (2002).
    [Crossref]
  37. C. Saloma, V. Darla, and J. Muñoz, “Fourier transform refractometry using multichannel detection,” Appl. Opt. 32(25), 4785–4789 (1993).
    [Crossref] [PubMed]
  38. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
    [Crossref] [PubMed]
  39. J. Yao, P. Meemon, M. Ponting, and J. P. Rolland, “Angular scan optical coherence tomography imaging and metrology of spherical gradient refractive index preforms,” Opt. Express 23(5), 6428–6443 (2015).
    [Crossref] [PubMed]
  40. J. Yao, P. Meemon, and J. P. Rolland, Nondestructive Metrology of Layered Polymeric GRIN Materials Using Optical Coherence Tomography” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012).
  41. J. Yao, J. Huang, P. Meemon, M. Ponting, and J. P. Rolland, “Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system,” Opt. Express 23(23), 30149–30164 (2015).
    [Crossref] [PubMed]
  42. G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
    [Crossref]
  43. H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
    [Crossref]
  44. B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
    [Crossref]
  45. A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
    [Crossref]
  46. J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
    [Crossref]
  47. C. S. Ray and D. E. Day, “An Analysis of Nucleation-Rate Type of Curves in Glass as Determined by Differential Thermal Analysis,” J. Am. Ceram. Soc. 80(12), 3100–3108 (1997).
    [Crossref]
  48. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).
  49. J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
    [Crossref]
  50. L. Gampel and F. M. Johnson, “Index of Refraction of Single-Crystal Selenium,” J. Opt. Soc. Am. 59(1), 72–73 (1969).
    [Crossref]
  51. B. Gleason, “Designing Optical Properties in Infrared Glass,” PhD dissertation, Department of Material Science and Engineering, Clemson University TigerPrints 1568, (2015).
  52. R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
    [Crossref]
  53. J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
    [Crossref]
  54. R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
    [Crossref]

2016 (2)

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

2015 (2)

2013 (1)

2012 (2)

2011 (1)

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

2010 (1)

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

2009 (3)

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

2006 (1)

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

2004 (1)

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

2003 (1)

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[Crossref]

2002 (1)

S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

2001 (1)

1999 (2)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

1997 (1)

C. S. Ray and D. E. Day, “An Analysis of Nucleation-Rate Type of Curves in Glass as Determined by Differential Thermal Analysis,” J. Am. Ceram. Soc. 80(12), 3100–3108 (1997).
[Crossref]

1996 (1)

1993 (1)

1988 (1)

1986 (1)

1982 (1)

1981 (2)

R. J. King and S. P. Talim, “A Comparison of Thin Film Measurement by Guided Waves, Ellipsometry and Reflectometry,” Optica Acta: International Journal of Optics 28(8), 1107–1123 (1981).
[Crossref]

A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
[Crossref]

1974 (1)

J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

1971 (1)

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

1969 (1)

1965 (1)

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Adam, J. L.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Agarwal, A.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Anderson, T.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Anheier, N. C.

H. A. Qiao, K. A. Lipschultz, N. C. Anheier, and J. S. McCloy, “Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS,” Opt. Lett. 37(9), 1403–1405 (2012).
[Crossref] [PubMed]

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

N. C. Anheier and H. A. Qiao, ”A mid-infrared prism coupler for bulk and thin film optical analysis,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

Atkinson, L. G.

Baer, E.

Bayya, S.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Beadie, G.

Bentley, J. L.

Bernacki, B.

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

Bon, P.

Branda, F.

A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
[Crossref]

Brocker, D. E.

Bungay, C.

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

Buri, A.

A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
[Crossref]

Campbell, S. D.

Carlie, N.

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Chan, J. W.

Chen, G.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Chen, J.

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

Choi, D. Y.

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

Choi, J.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Crawford, M. K.

Darla, V.

Davis, M. J.

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

Day, D. E.

C. S. Ray and D. E. Day, “An Analysis of Nucleation-Rate Type of Curves in Glass as Determined by Differential Thermal Analysis,” J. Am. Ceram. Soc. 80(12), 3100–3108 (1997).
[Crossref]

Deng, W.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Efimov, O. M.

Fleet, E.

Fleet, E. F.

Flynn, R. A.

Frumar, M.

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Galstian, T.

K. Palanjyan, R. Vallee, and T. Galstian, ”Photoinduced GRIN lens formation in chalcogenide Ge-As-S thin films,” in Proc. of SPIE9288 (SPIE, 2014).

Gampel, L.

Gibson, D.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Gleason, B.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Glebov, L. B.

Glebova, L. N.

Gu, Z.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Harkrider, C. J.

Herzinger, C.

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

Hewak, D. W.

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

Hiltner, A.

Houde-Walter, S.

Houde-Walter, S. N.

Hu, J.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Huang, J.

Huser, T.

Jedelský, J.

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Jensen, J. D.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Jin, Y.

Johnson, F. M.

Johs, B.

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

Kamdar, A. R.

Kazmierczak, T.

Kik, P. G.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

King, R. J.

R. J. King and S. P. Talim, “A Comparison of Thin Film Measurement by Guided Waves, Ellipsometry and Reflectometry,” Optica Acta: International Journal of Optics 28(8), 1107–1123 (1981).
[Crossref]

Kotov, M.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Krol, D. M.

Landy, N.

Lane, P. A.

Larouche, S.

Lee, J. S.

Li, C.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Lin, P. T.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Lipschultz, K. A.

Lumdee, C.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Luther-Davies, B.

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

Ma, H.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

MacChesney, J. B.

J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Marotta, A.

A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
[Crossref]

Massera, J.

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

Maucort, G.

McClain, C.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

McCloy, J. S.

McLeod, R. R.

Meemon, P.

Miklos, R.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Misture, S.

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

Monneret, S.

Moore, D. T.

Muñoz, J.

Musgrave, J. D.

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

Musgraves, J.

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

Musgraves, J. D.

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

Nagar, J.

Nemec, P.

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Nguyen, V.

V. Nguyen, S. Larouche, N. Landy, J. S. Lee, and D. R. Smith, “Quantitative comparison of gradient index and refractive lenses,” J. Opt. Soc. Am. A 29(11), 2479–2497 (2012).
[Crossref] [PubMed]

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Novak, S.

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

O’Connor, P. B.

J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Palanjyan, K.

K. Palanjyan, R. Vallee, and T. Galstian, ”Photoinduced GRIN lens formation in chalcogenide Ge-As-S thin films,” in Proc. of SPIE9288 (SPIE, 2014).

Petit, L.

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Phillips, M. C.

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

Pickering, M. A.

Ponting, M.

Prasad, A.

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

Presby, H. M.

J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Qiao, H. A.

H. A. Qiao, K. A. Lipschultz, N. C. Anheier, and J. S. McCloy, “Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS,” Opt. Lett. 37(9), 1403–1405 (2012).
[Crossref] [PubMed]

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

N. C. Anheier and H. A. Qiao, ”A mid-infrared prism coupler for bulk and thin film optical analysis,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

Ray, C. S.

C. S. Ray and D. E. Day, “An Analysis of Nucleation-Rate Type of Curves in Glass as Determined by Differential Thermal Analysis,” J. Am. Ceram. Soc. 80(12), 3100–3108 (1997).
[Crossref]

Remond, J.

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

Ren, J.

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Richardson, K.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

Richardson, K. C.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Richardson, M.

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Risbud, S.

Rolland, J. P.

Rosenberg, A.

Rouke, J. L.

Ryan, D. P.

Saitoh, A.

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[Crossref]

Saloma, C.

Sanghera, J.

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

Schoolar, R. B.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Shen, W. Z.

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

Shirk, J. S.

Singh, S.

S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

Sisken, L.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Slade, M. L.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Smirnov, V. I.

Smith, A.

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

Smith, C.

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

Smith, D. R.

Štábl, M.

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Stagaman, J. M.

Synowicki, R.

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

Tai, H.

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[Crossref]

Talim, S. P.

R. J. King and S. P. Talim, “A Comparison of Thin Film Measurement by Guided Waves, Ellipsometry and Reflectometry,” Optica Acta: International Journal of Optics 28(8), 1107–1123 (1981).
[Crossref]

Tanaka, K.

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[Crossref]

Taylor, R. L.

Tomkinson, T. H.

Vallee, R.

K. Palanjyan, R. Vallee, and T. Galstian, ”Photoinduced GRIN lens formation in chalcogenide Ge-As-S thin films,” in Proc. of SPIE9288 (SPIE, 2014).

Vlcek, M.

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Wang, H.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Wang, R. P.

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

Ward, A. T.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Wattellier, B.

Werner, D. H.

Woollam, J.

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

Xu, Y.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Yang, G.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Yang, Y.

Yao, J.

Ye, C.

Yunxia, Y.

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Zallen, R.

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Zemel, J. N.

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Zhang, X.

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[Crossref]

Ceram. Int. (1)

H. Wang, X. Zhang, G. Yang, Y. Xu, H. Ma, J. L. Adam, Z. Gu, and G. Chen, “Micro-crystallization of the infrared transmitting chalcogenide glass in GeSe2–As2Se3–PbSe system,” Ceram. Int. 35(1), 83–86 (2009).
[Crossref]

Critical Reviews of Optical Science and Technology (1)

J. Woollam, B. Johs, C. Herzinger, R. Synowicki, and C. Bungay, “Optical Metrology,” Critical Reviews of Optical Science and Technology CR72, 3–28 (1999).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Petit, N. Carlie, T. Anderson, J. Choi, M. Richardson, and K. C. Richardson, “Progress on the Photoresponse of Chalcogenide Glasses and Films to Near-Infrared Femtosecond Laser Irradiation: A Review,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1323–1334 (2008).
[Crossref]

Int. J. Appl. Glass Sci. (1)

B. Gleason, K. Richardson, L. Sisken, and C. Smith, “Refractive Index and Thermo-Optic Coefficients of Ge-As-Se Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 7(3), 374–383 (2016).
[Crossref]

J. Am. Ceram. Soc. (2)

G. Yang, X. Zhang, J. Ren, Y. Yunxia, G. Chen, H. Ma, and J. L. Adam, “Glass Formation and Properties of Chalcogenides in a GeSe2–As2Se3–PbSe System,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[Crossref]

C. S. Ray and D. E. Day, “An Analysis of Nucleation-Rate Type of Curves in Glass as Determined by Differential Thermal Analysis,” J. Am. Ceram. Soc. 80(12), 3100–3108 (1997).
[Crossref]

J. Appl. Phys. (2)

R. P. Wang, A. Smith, A. Prasad, D. Y. Choi, and B. Luther-Davies, “Raman spectra of GexAsySe1−x−y glasses,” J. Appl. Phys. 106(4), 043520 (2009).
[Crossref]

J. Chen and W. Z. Shen, “Raman study of phonon modes and disorder effects in Pb1-xSrxSe alloys grown by molecular beam epitaxy,” J. Appl. Phys. 99(1), 013513 (2006).
[Crossref]

J. Appl. Polym. Sci. (1)

Y. Jin, H. Tai, A. Hiltner, E. Baer, and J. S. Shirk, “New class of bioinspired lenses with a gradient refractive index,” J. Appl. Polym. Sci. 103(3), 1834–1841 (2007).
[Crossref]

J. Mater. Sci. (1)

A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci. 16(2), 341–344 (1981).
[Crossref]

J. Non-Cryst. Solids (1)

J. Massera, J. Remond, J. Musgraves, M. J. Davis, S. Misture, L. Petit, and K. Richardson, “Nucleation and growth behavior of glasses in the TeO2-Bi2O3-ZnO glass system,” J. Non-Cryst. Solids 356(52-54), 2947–2955 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Solids (1)

P. Němec, J. Jedelský, M. Frumar, M. Štábl, and M. Vlček, “Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition,” J. Phys. Chem. Solids 65(7), 1253–1258 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica Acta: International Journal of Optics (1)

R. J. King and S. P. Talim, “A Comparison of Thin Film Measurement by Guided Waves, Ellipsometry and Reflectometry,” Optica Acta: International Journal of Optics 28(8), 1107–1123 (1981).
[Crossref]

Phys. Rev. (1)

J. N. Zemel, J. D. Jensen, and R. B. Schoolar, “Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe,” Phys. Rev. 140(1A), A330–A342 (1965).
[Crossref]

Phys. Rev. B (1)

R. Zallen, M. L. Slade, and A. T. Ward, “Lattice Vibrations and Interlayer Interactions in Crystalline As2S3 and As2Se3,” Phys. Rev. B 3(12), 4257–4273 (1971).
[Crossref]

Phys. Scr. (1)

S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65(2), 167–180 (2002).
[Crossref]

Proc. IEEE (1)

J. B. MacChesney, P. B. O’Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” Proc. IEEE 62(9), 1280–1281 (1974).
[Crossref]

Rev. Sci. Instrum. (1)

N. Carlie, N. C. Anheier, H. A. Qiao, B. Bernacki, M. C. Phillips, L. Petit, J. D. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref] [PubMed]

Other (18)

J. Choi, “Femtosecond laser written diffractive optical elements and their applications,” PhD Dissertation, College of Optics, the University of Central Florida (2010).
[Crossref]

A. K. Buff, “A Study of Crystallization Behavior in Phase Separated Chalcogenide Glasses,” MS Thesis, Department of Materials Science and Engineering, University of Central Florida (2016).

A. Yadav, M. Kang, C. Smith, J. Lonergan, A. Buff, L. Sisken, K. Chama, C. Blanco, J. Caraccio, T. Mayer, C. Rivero-Baleine, and K. Richardson, “Influence of phase-separation on structure-property relationships in the (GeSe2-3As2Se3)1-xPbSex glass system,” Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B. (2017).

W. Holand and G. H. Beall, Glass Ceramic Technology (Wiley, 2012).

N. C. Anheier and H. A. Qiao, ”A mid-infrared prism coupler for bulk and thin film optical analysis,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

H. A. Qiao, N. C. Anheier, J. D. Musgrave, K. Richardson, and D. W. Hewak, ”Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler,” in Proc. of SPIE8016 (SPIE, 2011).
[Crossref]

J. Yao, P. Meemon, and J. P. Rolland, Nondestructive Metrology of Layered Polymeric GRIN Materials Using Optical Coherence Tomography” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012).

K. Palanjyan, R. Vallee, and T. Galstian, ”Photoinduced GRIN lens formation in chalcogenide Ge-As-S thin films,” in Proc. of SPIE9288 (SPIE, 2014).

O. M. Efimov, L. B. Glebov, V. I. Smirnov, and L. Glebova, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” US 09/648,293, (2003).

L. G. Atkinson, D. S. Kindred, D. T. Moore, and J. R. Zinter, “Negative abbe number radial gradient index relay and use of same,” US 08/017,034 (1994).

D. Gibson, S. Bayya, and J. Sanghera, Homogeneous and Gradient Index (GRIN) Materials For Multi-Band IR Optics” in Classical Optics 2014 (Optical Society of America, 2014).

D. Gibson, S. Bayya, J. Sanghera, V. Nguyen, D. Scribner, V. Maksimovic, J. Gill, A. Yi, J. Deegan, and B. Unger,”Layered chalcogenide glass structures for IR lenses” in SPIE 9070, Infrared Technology and Applications XL (2014).

D. Gibson, S. Bayya, V. Nguyen, J. Sanghera, M. Kotov, R. Miklos, and C. McClain, ”IR-GRIN optics for imaging,” in Proc. of SPIE9822 (SPIE, 2016).

S. Novak, P. T. Lin, C. Li, C. Lumdee, J. Hu, A. Agarwal, P. G. Kik, W. Deng, and K. Richardson, “Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray,” ACS Appl. Mater. Interfaces. in press.

K. Richardson, J. David Musgraves, P. Wachtel, C. Rivero-Baleine, and T. Mayer, “Method of Forming an Optical Device and Optical Apparatus,” U.S. Patent No. 9,340,446 (17 May 2016).

M. Dussauze, A. Lepicard, M. Bondu, V. Rodriguez, F. Adamietz, T. Cardinal, E. Fargin, and K. Richardson, Device and Method for Inducing by Thermal Poling a Spatially Controlled Refractive Index Gradient Inside an Amorphous Inorganic Material,” European Patent application #EP16176689.4 (28 June 2016).

B. Gleason, “Designing Optical Properties in Infrared Glass,” PhD dissertation, Department of Material Science and Engineering, Clemson University TigerPrints 1568, (2015).

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (A) The glass forming region (to the left of the red line shown) as described by Wang and Yang et al. [42,43], in the As2Se3-GeSe2-PbSe ternary system. The 15GeSe2-45As2Se3-40PbSe [154540 GAP-Se] composition is shown by the blue star. (B) A picture of a 30 mm polished slice of this glass in the visible.
Fig. 2
Fig. 2 (Left) Sample sectioning protocol: a rod was sliced into disks, which were then quartered. All of the quarters of one slice were then HT at a single nucleation temperature. Each of the quarters were then grown at a different growth HT temperatures. (Right) Nucleation-like (I) and growth-like (U) curve for the base 154540 GAP-Se glass [27]. When the sample goes through a nucleation step before growth, the growth curve shifts to lower values.
Fig. 3
Fig. 3 Raman spectra were measured at 0.25 mm increments in the z-direction, and 1 mm in the x-direction (depicted by red dots, and is not to scale) on a cross-sectioned disk to quantify the extent of the modifications across the 2D sample volume. The background coloration (not to scale) is representative of the expected temperature profile while the sample is irradiated, while held at 190°C. The green, Gaussian shaped “beam” incident on the top surface is representative of the beam size with respect to the sample diameter, with a Gaussian intensity profile depicted on the sample surface.
Fig. 4
Fig. 4 (A) XRD spectrum for the base glass confirming the glass’ as-melted x-ray amorphous nature. (B) 2-D within-slice refractive index homogeneity map (λ = 4.515μm) measured at 21 locations across the 30 mm diameter slice. The dots show measurement locations and the spot size of the measurement was ~2 mm. The color variation shows the range of index variation (C) Transmission spectrum for a 2 mm thick sample, not corrected for Fresnel loss. (D) MicroRaman spectra of the base glass (λexc = 785nm).
Fig. 5
Fig. 5 (A) Representative XRD spectra for the 154540 GAP-Se glass following nucleation at 190°C, with furnace HT at temperatures shown for 30 min. (B) Measured refractive index (λ = 4.515 μm) versus growth temperature for various nucleation temperatures. (C) Measured (experimental) refractive index values obtained as a function of HT temperature, as compared to calculated refractive index based on volume fraction of crystal phase formed from XRD spectra.
Fig. 6
Fig. 6 (A) Raman spectra at λexc = 785nm for base glass prior to and following nucleation (190°C) and growth treatments. Spectra have been normalized to the 200 cm−1 peak. (B) Raman ratio versus heat treatment temperature for various nucleation protocols. (C) Direct correlation between Raman ratio and refractive index indicative of fractional conversion of glass to glass ceramic.
Fig. 7
Fig. 7 (Top) Simulated temperature profile induced for the λ = 532 nm laser irradiation conditions used, incorporating thermal properties measured on the bulk glass. (Bottom) The experimentally predicted temperature profile as determined by the change in the Raman ratio with temperature.
Fig. 8
Fig. 8 The mapped refractive index values predicted by simulation (top) and prediction from the experimentally measured Raman (middle). The bottom plot is the difference between the two spectra in refractive index units.
Fig. 9
Fig. 9 Focal spot as measured in a laser-written 3-D GRIN structure. (Left) focal spot of measurement beam (collimated 2µm laser) without and with sample inserted, where the color scale shows the center beam intensity (yellow high, purple low). (Right) beam waist measurement as a function of position, and fitted (solid line) to extrapolate the measured focal length of the GRIN lens 84.3 ± 2.7mm. The blue line represents the plane where the images on the left were taken.

Tables (2)

Tables Icon

Table 1 Thermal properties for 15As2Se3-45GeSe2-40PbSe that were used in simulations.

Tables Icon

Table 2 The base glass optical properties of the melt prior to irradiation and/or HT. The index value is the average of the measurements used in Fig. 4(b), and the error is the standard deviation of these measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q in =P( 1R )( 2 w 0 2 ) e ( 2 r 2 w 0 2 )

Metrics