Abstract

We describe the near-field properties of plasmonic nanoclusters made of gold nanorod (AuNR) and gold nanosphere (AuNS) colloids that are assembled using self-complementary split-green fluorescence protein (sGFP) fragments. Numerical modeling of the optical responses and field enhancement characteristics for these hybrid AuNR/AuNS heteroclusters were performed (i) as a function of AuNS binding locations along the edges or at the tips of AuNRs, (ii) as a function of the size and number of AuNS per AuNR, and (iii) as a function of cluster geometry and orientation with respect to the major polarization states of light. We show that near-infrared (NIR)-active plasmonic hot spots that provide large SERS enhancement factors of the vibrational fingerprints from the reconstructed GFP-chromophore are consistently obtained for longitudinally polarized-excitation of the AuNR/AuNS nanoassemblies. A set of clusters having sufficiently flexible geometry and good spectral resonance with traditional NIR laser excitations at 785 nm is proposed for NIR SERS detection of the GFP chromophore with enhancement factors in the range of 107-108 folds. This study provides grounds to improve the assembly of hot spot AuNR/AuNS SERS nanoprobes for NIR biosensing using GFP as a Raman reporter.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology

Jing Yu, Yisheng Wei, Huijie Wang, Chao Zhang, Yunjia Wei, Minghui Wang, Baoyuan Man, and Fengcai Lei
Opt. Express 27(7) 9879-9894 (2019)

Wafer-scale 3D cloud-like aluminum hierarchical nanostructure for NIR SERS

Nan Zhao, Hefu Li, Zhenshan Yang, Cunwei Tian, Yanru Xie, Zhenbao Feng, Zongliang Wang, Xunling Yan, Wenjun Wang, and Huishan Yu
Opt. Mater. Express 9(8) 3546-3556 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  2. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
    [Crossref] [PubMed]
  3. J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
    [Crossref] [PubMed]
  4. T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
    [Crossref] [PubMed]
  5. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
    [Crossref] [PubMed]
  6. T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
    [Crossref] [PubMed]
  7. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [Crossref] [PubMed]
  8. A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
    [Crossref] [PubMed]
  9. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  10. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
    [Crossref]
  11. J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
    [Crossref] [PubMed]
  12. P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman-scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
    [Crossref]
  13. A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
    [Crossref] [PubMed]
  14. C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
    [Crossref] [PubMed]
  15. Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
    [Crossref] [PubMed]
  16. S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
    [Crossref] [PubMed]
  17. L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
    [Crossref] [PubMed]
  18. A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
    [Crossref] [PubMed]
  19. M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.) 47(13), 3769–3771 (2011).
    [Crossref] [PubMed]
  20. T. Koker, T. Chung, and F. Pinaud, “Self-assembled split-FP/metal nanoclusters as Raman enhancers for molecular and cellular detection,” presented at the 251st American Chemical Society National Meeting, San Diego, CA, USA, 13–17 March 2016.
  21. T. Koker, N. Tang, C. Tian, X. Wang, R. Martel, and F. Pinaud, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA, are preparing a manuscript to be called “Targeted cell imaging by in-situ assembly and activation of hot spot SERS nanoprobes using split-fluorescent protein scaffolds,”.
  22. S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
    [Crossref] [PubMed]
  23. G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
    [Crossref] [PubMed]

2016 (1)

T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
[Crossref] [PubMed]

2014 (2)

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

2013 (1)

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

2012 (1)

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

2011 (2)

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.) 47(13), 3769–3771 (2011).
[Crossref] [PubMed]

2010 (2)

T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
[Crossref] [PubMed]

Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
[Crossref] [PubMed]

2009 (3)

C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

2008 (2)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

2007 (1)

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

2006 (2)

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
[Crossref] [PubMed]

2005 (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

2000 (1)

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

1982 (1)

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman-scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Alvarez-Puebla, R. A.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Barrow, S.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

Bell, A. F.

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

Bhatia, S. N.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Blaber, M. G.

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.) 47(13), 3769–3771 (2011).
[Crossref] [PubMed]

Breivogel, A.

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

Centrone, A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Chen, H.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Chen, X.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Cheng, Z.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Cho, M. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Choi, H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Chung, T.

T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
[Crossref] [PubMed]

Cunha-Matos, C. A.

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

de la Zerda, A.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

Fang, C.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Funston, A. M.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Gambhir, S. S.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Gheysens, O.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Gulati, A.

A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
[Crossref] [PubMed]

Hafner, J. H.

A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
[Crossref] [PubMed]

Han, H. W.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Hatton, T. A.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

He, X.

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

Irudayaraj, J.

Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
[Crossref] [PubMed]

Jang, E. S.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Jeong, D. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Joe, A.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Jun, B. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Keren, S.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Kim, B. M.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kim, J. S.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kim, Y. K.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Koker, T.

T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
[Crossref] [PubMed]

Kuk, E.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kumar, J.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

Lee, K.

Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
[Crossref] [PubMed]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Lee, S. M.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Lee, Y. S.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Liao, H.

A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
[Crossref] [PubMed]

Liao, P. F.

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman-scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

Lin, H. Q.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Liz-Marzán, L. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Man, Y. C.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

McLintock, A.

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

Millington, O. R.

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

Mulvaney, P.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Park, J. H.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Pierrat, S.

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

Pinaud, F.

T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
[Crossref] [PubMed]

Ramanathan, R.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Romo-Herrera, J. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Sailor, M. J.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Scaffidi, J.

T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
[Crossref] [PubMed]

Schatz, G. C.

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.) 47(13), 3769–3771 (2011).
[Crossref] [PubMed]

Seo, S. H.

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Shao, L.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Sönnichsen, C.

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

Tabor, C.

C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
[Crossref] [PubMed]

Thomas, K. G.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

Tonge, P. J.

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

Van Haute, D.

C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
[Crossref] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
[Crossref] [PubMed]

von Maltzahn, G.

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Wachter, R. M.

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

Wang, H. N.

T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
[Crossref] [PubMed]

Wang, J.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
[Crossref] [PubMed]

Wark, A. W.

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

Wei, X.

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

Wokaun, A.

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman-scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

Yu, K. N.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Zagnoni, M.

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

Zavaleta, C.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Zins, I.

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

ACS Nano (2)

A. McLintock, C. A. Cunha-Matos, M. Zagnoni, O. R. Millington, and A. W. Wark, “Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm),” ACS Nano 8(8), 8600–8609 (2014).
[Crossref] [PubMed]

C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3(11), 3670–3678 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

G. von Maltzahn, A. Centrone, J. H. Park, R. Ramanathan, M. J. Sailor, T. A. Hatton, and S. N. Bhatia, “SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. 21(31), 3175–3180 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

Biochemistry (1)

A. F. Bell, X. He, R. M. Wachter, and P. J. Tonge, “Probing the ground state structure of the green fluorescent protein chromophore using Raman spectroscopy,” Biochemistry 39(15), 4423–4431 (2000).
[Crossref] [PubMed]

Biomaterials (1)

S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Chen, Z. Cheng, and E. S. Jang, “NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites,” Biomaterials 35(10), 3309–3318 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimers,” Chem. Commun. (Camb.) 47(13), 3769–3771 (2011).
[Crossref] [PubMed]

Y. Wang, K. Lee, and J. Irudayaraj, “SERS aptasensor from nanorod-nanoparticle junction for protein detection,” Chem. Commun. (Camb.) 46(4), 613–615 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” J. Biophotonics 3(1-2), 89–102 (2010).
[Crossref] [PubMed]

J. Chem. Phys. (1)

P. F. Liao and A. Wokaun, “Lightning rod effect in surface enhanced Raman-scattering,” J. Chem. Phys. 76(1), 751–752 (1982).
[Crossref]

J. Phys. Chem. B (2)

A. Gulati, H. Liao, and J. H. Hafner, “Monitoring gold nanorod synthesis by localized surface plasmon resonance,” J. Phys. Chem. B 110(45), 22323–22327 (2006).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Nano Lett. (3)

S. Pierrat, I. Zins, A. Breivogel, and C. Sönnichsen, “Self-assembly of small gold colloids with functionalized gold nanorods,” Nano Lett. 7(2), 259–263 (2007).
[Crossref] [PubMed]

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref] [PubMed]

Nanoscale (1)

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

J. Kumar, X. Wei, S. Barrow, A. M. Funston, K. G. Thomas, and P. Mulvaney, “Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers,” Phys. Chem. Chem. Phys. 15(12), 4258–4264 (2013).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Small (1)

T. Chung, T. Koker, and F. Pinaud, “Split-GFP: SERS enhancers in plasmonic nanocluster probes,” Small 12(42), 5891–5901 (2016).
[Crossref] [PubMed]

Other (2)

T. Koker, T. Chung, and F. Pinaud, “Self-assembled split-FP/metal nanoclusters as Raman enhancers for molecular and cellular detection,” presented at the 251st American Chemical Society National Meeting, San Diego, CA, USA, 13–17 March 2016.

T. Koker, N. Tang, C. Tian, X. Wang, R. Martel, and F. Pinaud, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA, are preparing a manuscript to be called “Targeted cell imaging by in-situ assembly and activation of hot spot SERS nanoprobes using split-fluorescent protein scaffolds,”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 FDTD modeling of gold nanorods. (a) TEM image of AuNRs (40 nm length and 10 nm width). Scale bar: 50 nm. (b) Comparison between the experimental extinction spectrum for a solution of 40x10 nm AuNRs and the calculated extinction spectrum of a single AuNR. (c) Plasmonic near-field maximum wavelength and the degree of near-field electric enhancement as a function of AuNR length from 30 nm to 70 nm for a fixed 10 nm AuNR width. Incident electric field is 1 (V/m). The near-field maximum wavelength red-shifts linearly as a function of AuNR length with a slope of about 10 (red curve).
Fig. 2
Fig. 2 Near-field responses of edge-coupled AuNR/AuNS nanoclusters illuminated by longitudinally polarized light. (a) TEM images of AuNR/AuNS clusters assembled with sGFP fragments. Scale bars: 20 nm. (b) Near-field spectra as a function of the number of 10 nm AuNSs bound to a 50 nm AuNR. (c) Cross-sectional field enhancement distribution for 50 nm AuNRs clusters with 1-3 AuNSs. (d) Local SERS enhancement factor at each hot spot for a 50 nm AuNR with three 10 nm AuNSs having GFP-seeded or hollow nanogaps. (e) Comparison of total SERS enhancement factors for clusters formed with AuNRs 40 or 50 nm in length and with 1-3 AuNSs 10 nm in diameter. (f) Near-field spectra comparison for AuNR/AuNS clusters with 40 or 50 nm AuNRs in the presence or absence of one 10 nm AuNS and for GFP-seeded or hollow nanogaps.
Fig. 3
Fig. 3 Spectral tunability of edge-coupled AuNR/AuNS clusters formed by split-GFP fragment assembly under longitudinally polarized excitation. (a) Near-field maximum wavelength spectra as a function of AuNS diameter. (b) Cross-sectional electric field distribution as a function of AuNS diameter. (c) Near-field spectra and enhancements within GFP-seeded hot spots for various AuNR/AuNS hetero-nanoclusters formed with a 40x10 nm AuNR and different 10 nm AuNSs. Inset arrows are monitoring point for near-field spectra.
Fig. 4
Fig. 4 Near-field responses of edge-coupled AuNR/AuNS hetero-nanoclusters under transversely polarized excitation. (a) TEM images of a AuNR/AuNS dimers and corresponding schematic of dimeric AuNR/AuNS clusters with varying AuNS diameter. Scale bars: 10 nm. (b) Near-field wavelength spectra calculated at GFP-seeded plasmonic hot spot for edge-coupled AuNR/AuNS clusters as a function of AuNS size and of light polarization. Inset: Near-field spectrum of a 40x10 nm AuNR. (c) Near-field maximum wavelength as a function of AuNS diameter. (d) SERS enhancement factor as a function of AuNS diameter and GFP seeding for heterodimers formed with a 40 nm AuNR. (e) Percentage in additional SERS enhancement induced by GFP seeding in AuNR/AuNS dimers as a function of AuNS size.
Fig. 5
Fig. 5 Tip-coupled AuNR/AuNS clusters under longitudinally polarized excitation. (a) TEM image of a tip-coupled AuNR/AuNS dimer formed by a 40x10 nm AuNR and a 40 nm AuNS. Scale bar: 40 nm. (b) Schematic of a 40/40x10/40 nm AuNS/AuNR/AuNS nanodumbbell, an extended cluster of the tip-coupled dimer in (a). (c) Calculated cross-sectional electric field distribution of the tip-coupled dimer in (a) at a near-field wavelength of 905 nm. Scale bar: 40 nm. (d) Calculated cross-sectional electric field distribution of the gold nanodumbbell in (b) at the maximum near-field wavelength of 967 nm. Scale bar: 40 nm. (e) Near-field wavelength spectra monitored at the left-hand GFP-seeded plasmonic hot spot in gold nanodumbbells when the size of the left-hand AuNS is fixed at 40 nm and the size of the right-hand AuNS is changed from 10 nm to 40 nm. (f) Total SERS enhancement factor from both hot spot in 40/40x10/y AuNS/AuNR/AuNS nanodumbbells as a function of right-hand AuNS diameter.
Fig. 6
Fig. 6 SERS detection of the GFP chromophore fingerprints for different AuNR/AuNS nanoclusters under longitudinally polarized excitation at 785 nm. (a) Comparison of the near-field properties for a variety of GFP-seeded clusters. The position of a 785 nm laser line (red line) and that of the Stokes-shifted wavelength scattered by the chromophore imidazolinone/exocyclic C = C vibrational mode (red dash) are shown. (b) Comparison between the total SERS enhancement factor of the GFP chromophore C = C mode and the total SERS enhancement factor at λmax for different AuNS/AuNS and AuNR/AuNS nanoclusters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E F SERSGFP    | E( ω exc ) E 0 ( ω exc ) | 2 | E( ω vibGFP ) E 0 ( ω vibGFP ) | 2

Metrics