Abstract

Obvious healing behavior of gamma radiation induced defects in multicomponent phosphate glass was observed at room temperature. The recovery of the defects depends on the ratio of H3BO3/SiO2 in the investigated glasses, the total gamma radiation dose, and the time of ageing at room temperature. Meanwhile, the synchronous decreases of PO3-EC and POHC defects contribute to the corresponding recovery of the transmittance change at 385 nm and 525 nm, which could be described by the charge transfer. Besides, a general model of the healing mechanism associated with the release and capture of the electrons between PO3-EC and POHC defects in these phosphate glass was proposed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses

Quanlong He, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(8) 2697-2705 (2017)

Significant improvement of gamma radiation resistance in CeO2 doped phosphate glass by co-doping with Sb2O3

Quanlong He, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(3) 1113-1121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
    [Crossref]
  2. S. N. Dixit, M. C. Rushford, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, and M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).
  3. J. Honig, J. J. Adams, C. W. Carr, S. G. Demos, M. D. Feit, N. C. Mehta, M. A. Norton, M. C. Nostrand, A. M. Rubenchik, and M. L. Spaeth, “Optics performance at 1ω, 2ω and 3ω: final report on LDRD Project 03-ERD-071,” Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2006.
  4. S. Dixit, J. Menapace, J. Yu, J. Britten, and R. Hyde, “Large-aperture diffractive optical elements for high power laser and space applications,” in diffractive optics and micro-optics, Rochester, New York, October 10, 2004.
    [Crossref]
  5. P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
    [Crossref] [PubMed]
  6. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
    [Crossref] [PubMed]
  7. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
    [Crossref] [PubMed]
  8. U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1), 143–150 (2001).
    [Crossref]
  9. D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
    [Crossref]
  10. D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).
  11. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses Invited,” Opt. Mater. Express 1(5), 845–855 (2011).
    [Crossref]
  12. P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
    [Crossref]
  13. M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
    [Crossref]
  14. H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
    [Crossref]
  15. P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
    [Crossref] [PubMed]
  16. Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
    [Crossref]
  17. Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses,” Opt. Mater. Express 7(8), 2697–2705 (2017).
    [Crossref]
  18. P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

2017 (1)

2016 (2)

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

2015 (3)

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

2011 (2)

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses Invited,” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

2006 (1)

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

2004 (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
[Crossref]

2002 (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

2001 (2)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1), 143–150 (2001).
[Crossref]

2000 (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

1991 (1)

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Bozdogan, O.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Brow, R. K.

Chen, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Ehrt, D.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1), 143–150 (2001).
[Crossref]

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Ertap, H.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Feng, S.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

Fletcher, L. B.

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

Gao, F.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Guo, H.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Harada, T.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

He, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

He, Q.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses,” Opt. Mater. Express 7(8), 2697–2705 (2017).
[Crossref]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

Hou, C.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Hu, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

Karabulut, M.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Krol, D. M.

Kuwabara, M.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

Li, W.

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Lu, M.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses,” Opt. Mater. Express 7(8), 2697–2705 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Mammadov, G. M.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
[Crossref]

Möncke, D.

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
[Crossref]

Natura, U.

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1), 143–150 (2001).
[Crossref]

Osellame, R.

Peng, B.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses,” Opt. Mater. Express 7(8), 2697–2705 (2017).
[Crossref]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Qiu, J.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

Reis, S. T.

Seeber, W.

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Sun, M.

Takebe, H.

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

Troy, N.

Vazquez, R. M.

Wang, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

Wang, P.

Q. He, P. Wang, M. Sun, M. Lu, and B. Peng, “Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses,” Opt. Mater. Express 7(8), 2697–2705 (2017).
[Crossref]

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Witcher, J. J.

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
[Crossref]

Xu, Y.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Yu, C.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

Yuce, B.

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

Zhou, Z.

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

Glass Sci. Technol. (2)

D. Möncke and D. Ehrt, “Radiation-induced defects in CoO- and NiO-doped fluoride-phosphate glasses,” Glass Sci. Technol. 74(3), 65–73 (2001).

P. Ebeling, D. Ehrt, and M. Friedrich, “Study of radiation-induced defects in fluoride-phosphate glasses by means of optical absorption and EPR spectroscopy,” Glass Sci. Technol. 73(5), 156–162 (2000).

J. Alloys Compd. (1)

Q. He, P. Wang, M. Lu, and B. Peng, “Investigations on the photoluminescence of the iron and cobalt doped fluoride-containing phosphate-based glasses and its defects-related nature,” J. Alloys Compd. 685, 153–158 (2016).
[Crossref]

J. Non-Cryst. Solids (3)

M. Karabulut, B. Yuce, O. Bozdogan, H. Ertap, and G. M. Mammadov, “Effect of boron addition on the structure and properties of iron phosphate glasses,” J. Non-Cryst. Solids 357(5), 1455–1462 (2011).
[Crossref]

H. Takebe, T. Harada, and M. Kuwabara, “Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses,” J. Non-Cryst. Solids 352(6), 709–713 (2006).
[Crossref]

D. Ehrt and W. Seeber, “Glass for high-performance optics and laser technology,” J. Non-Cryst. Solids 129(1–3), 19–30 (1991).
[Crossref]

Nucl. Fusion (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44(12), S228–S238 (2004).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

U. Natura and D. Ehrt, “Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: the dependence on UV radiation sources and temperature,” Nucl. Instrum. Methods Phys. Res. B 174(1), 143–150 (2001).
[Crossref]

Opt. Mater. (1)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Opt. Mater. Express (2)

Sci. Rep. (4)

P. Wang, Q. He, M. Lu, W. Li, and B. Peng, “Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation,” Sci. Rep. 6, 18926 (2016).
[Crossref] [PubMed]

P. Wang, M. Lu, F. Gao, H. Guo, Y. Xu, C. Hou, Z. Zhou, and B. Peng, “Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage,” Sci. Rep. 5, 8593 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Yb/Er co-doped phosphate all-solid single-mode photonic crystal fiber,” Sci. Rep. 4, 6139 (2015).
[Crossref] [PubMed]

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W,” Sci. Rep. 5, 8490 (2015).
[Crossref] [PubMed]

Other (3)

S. N. Dixit, M. C. Rushford, I. M. Thomas, S. M. Herman, J. A. Britten, B. W. Shore, and M. D. Perry, “Color separation gratings for diverting the unconverted light away from the NIF target,” in Second International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, M. Andre, ed., Proc. SPIE3047, 463–470 (1996).

J. Honig, J. J. Adams, C. W. Carr, S. G. Demos, M. D. Feit, N. C. Mehta, M. A. Norton, M. C. Nostrand, A. M. Rubenchik, and M. L. Spaeth, “Optics performance at 1ω, 2ω and 3ω: final report on LDRD Project 03-ERD-071,” Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2006.

S. Dixit, J. Menapace, J. Yu, J. Britten, and R. Hyde, “Large-aperture diffractive optical elements for high power laser and space applications,” in diffractive optics and micro-optics, Rochester, New York, October 10, 2004.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Transmission spectra of a series of glasses with different ratio of H3BO3 to SiO2 (0:2, 1.5:2, 4.5:2 and 7.5:2) with different total dose of gamma radiation (20k, 100k, 250k, 500k and 1000k rad(Si)).
Fig. 2
Fig. 2 (a) Photographs of a series of phosphate based glasses with different H3BO3: SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2) after exposed to different total radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)). (b) Transmission spectra of the series of glasses with different ratio of H3BO3 to SiO2 (0:2, 1.5:2, 4.5:2 and 7.5:2) with a gamma radiation of 500k rad(Si) after being aged for 165 h. (c) Transmission spectra of the irradiated (20k, 100k, 250k, 500k and 1000k rad(Si)) sample with the H3BO3/SiO2 ratio of 0:2 with an ageing time of 165 h. (d) Transmission spectra of the sample (H3BO3/SiO2 = 0:2) with gamma radiation of 500k rad(Si) after different ageing time (0h, 15h, 65h, 165h, 365h, 765h, 1500h) at room temperature.
Fig. 3
Fig. 3 Change of the measured transmittance at 385 nm for: (a) the series of glasses with different H3BO3/SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2) under different gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)) and (b) the sample (H3BO3/SiO2 = 0:2) with different gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)) and increasing ageing time (0h, 15h, 65h, 165h, 365h, 765h, 1500h) at room temperature.
Fig. 4
Fig. 4 Change of the measured transmittance at 525 nm for: (a) the series of glasses with different H3BO3/SiO2 ratio (0:2, 1.5:2, 4.5:2 and 7.5:2) under different gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)) and (b) the sample (H3BO3/SiO2 = 0:2) with different gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)) and increasing ageing time (0h, 15h, 65h, 165h, 365h, 765h, 1500h) at room temperature.
Fig. 5
Fig. 5 Separation of radiation (500k rad(Si)) induced absorption band for the sample with the H3BO3/SiO2 ratio of 0:2 after being aged for 165 h.
Fig. 6
Fig. 6 Line chart displaying the change in absorption-peak’s area of PO3-EC defect with ageing time (0h, 15h, 65h, 165h, 365h, 765h, 1500h) in the series of irradiated glasses with different H3BO3/SiO2 ratio (0:2 (a), 1.5:2 (b), 4.5:2 (c) and 7.5:2 (d)) and various gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)).
Fig. 7
Fig. 7 Line chart displaying the change in absorption-peak’s area of POHC defect with ageing time (0h, 15h, 65h, 165h, 365h, 765h, 1500h) in the series of irradiated glasses with different H3BO3/SiO2 ratio (0:2 (a), 1.5:2 (b), 4.5:2 (c) and 7.5:2 (d)) and various gamma radiation dose (20k, 100k, 250k, 500k and 1000k rad(Si)).
Fig. 8
Fig. 8 Schematic of the formation and healing mechanism of the PO3-EC and POHC defects during the gamma radiation and ageing process.

Metrics