Abstract

We propose a broadband perfect metamaterial absorber (MA) working at the terahertz (THz) frequencies based on the rectangular fish-scale structure. The averaged absorption of the MA is higher than 85% from about 0.85 to 1.95 THz with a maximum value of 99.5% at normal incidence. The broad and high absorption can also be obtained for the large oblique incidence of ±70°. The mixtures of the electric and the magnetic resonances contribute to the excellent performance of the MA. Furthermore, this MA is independent to the polarization states of the incident electromagnetic (EM) waves due to its four-folder rotational symmetry of the unit cell.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Bing Gao, and Wei-Li Zhang
Opt. Express 26(20) 25558-25566 (2018)

Dual broadband absorber based on graphene metamaterial in the terahertz range

Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu
Opt. Mater. Express 8(12) 3899-3909 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
    [Crossref]
  2. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [Crossref] [PubMed]
  3. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  4. D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref] [PubMed]
  5. N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  8. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  9. P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
    [Crossref]
  10. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  11. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref] [PubMed]
  12. Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
    [Crossref] [PubMed]
  13. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
    [Crossref] [PubMed]
  14. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  15. A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).
  16. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref] [PubMed]
  17. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  18. S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
    [Crossref]
  19. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  20. X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
    [Crossref]
  21. Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
    [Crossref]
  22. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
    [Crossref]
  23. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  24. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  25. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [Crossref]
  26. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  27. X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  28. F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
    [Crossref]
  29. D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
    [Crossref]
  30. B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
    [Crossref]
  31. B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
    [Crossref]
  32. S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
    [Crossref]
  33. C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
    [Crossref]
  34. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
    [Crossref]
  35. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  36. J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  37. X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
    [Crossref]
  38. S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).
  39. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
    [Crossref]
  40. X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
    [Crossref]
  41. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
    [Crossref]
  42. Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
    [Crossref]
  43. C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
    [Crossref] [PubMed]
  44. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
    [Crossref] [PubMed]
  45. V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
    [Crossref]
  46. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
    [Crossref]
  47. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref] [PubMed]
  48. X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
    [Crossref]
  49. X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
    [Crossref] [PubMed]
  50. C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
    [Crossref]
  51. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
    [Crossref]
  52. B. X. Wang, “Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs,” IEEE J. Sel. Top. Quant. 23(4), 4700107 (2017).
    [Crossref]
  53. N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
    [Crossref]
  54. Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
    [Crossref]

2017 (5)

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

B. X. Wang, “Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs,” IEEE J. Sel. Top. Quant. 23(4), 4700107 (2017).
[Crossref]

2016 (8)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
[Crossref]

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

2015 (12)

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

2014 (4)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

2013 (6)

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

2012 (3)

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37(5), 906–908 (2012).
[Crossref] [PubMed]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

2011 (3)

2010 (5)

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
[Crossref]

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

2009 (1)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (3)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

2005 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Amin, M.

Amirhosseini, A.

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Bagci, H.

Bai, P.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Bao, D.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Cai, B.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Cao, S. Y.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Cao, W.

Chen, H. B.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Chen, H. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Chen, L.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Chen, L. Y.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Chen, Q.

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, Y.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Cheng, H. B.

S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).

Cheng, Y. Z.

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Cheong, H.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Cui, T. J.

S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

Ding, F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Dung, N. V.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Elbahri, M.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fan, K.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fan, Y. C.

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fardoost, A.

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Farhat, M.

Faupel, F.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fu, Y. Q.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Gao, P.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Gong, C.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Gong, R. Z.

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Gong, Y.

Grant, J.

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Gu, J.

Gu, J. Q.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Gu, Y.

Guo, Y. S.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Han, J.

Han, J. G.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

He, Q.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S. L.

He, X. J.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Highstrete, C.

Hong, M.

Hou, X. J.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Hu, D.

D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
[Crossref]

Hu, F. R.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Huang, F. M.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Huang, N.

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

Huang, W. Q.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Hwang, J. S.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Jang, W. H.

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Ji, J.

Jia, P.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jiang, J. X.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jin, Y.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kao, T. S.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Khalid, A.

Kim, K. W.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Kim, Y. H.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Kim, Y. J.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Koschny, T.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Lakhtakia, A.

Lam, V. D.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Landy, N. I.

Lee, M.

Lee, Y. P.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Li, D.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, H. Q.

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, J. S.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Li, X. F.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Li, X. W.

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

Li, Z.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Liang, H.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Lin, B.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Ling, F.

Ling, F. R.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Liu, H.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, H. J.

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

Liu, S.

S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Liu, W.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Liu, X.

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Luo, C.

Luo, C. Y.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Luo, Q.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Luo, S. N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Lv, X. L.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Ma, Q. X.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Ma, S. J.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Ma, Y.

Ma, Y. G.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nie, Y.

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Nikitov, S. A.

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

O’Hara, J. F.

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

Pan, X. C.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Park, J. W.

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Pei, Z.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Peng, W.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Peng, Y.

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Plum, E.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Qi, L. M.

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

X. Zhang, Y. C. Fan, L. M. Qi, and H. Q. Li, “Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies,” Opt. Mater. Express 6(7), 2448–2457 (2016).
[Crossref]

Qiu, C. W.

Qu, S.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Quan, B. G.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Rhee, J. Y.

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Rogers, E. T. F.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

Safian, R.

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Saha, S.

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sang, T.

B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shadrivov, I. V.

Shen, N. H.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shen, X. P.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shi, C.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Strunskus, T.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Sun, Q. B.

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

Sun, W. J.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Tung, B. S.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Tuong, P. V.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Vanani, F. G.

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Wang, B. X.

B. X. Wang, “Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs,” IEEE J. Sel. Top. Quant. 23(4), 4700107 (2017).
[Crossref]

B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
[Crossref]

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, C.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Wang, D.

Wang, G. Z.

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, H. Y.

D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
[Crossref]

Wang, J.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Wang, L.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Wang, L. L.

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Wang, Z.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Wei, Z. Y.

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Williams, G. P.

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Wu, F. M.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Wu, Z. A.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Xu, X. L.

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

Xu, Z.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Yan, S. T.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Yang, J.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Yang, Y.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Yao, G.

Yao, J.

Yao, J. Q.

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Ye, Y. Q.

Yoo, Y. J.

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Yu, W. X.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

Yue, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref] [PubMed]

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

Zang, X.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Zang, Y. Z.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

Zhai, X.

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Zhan, M.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Zhang, L. T.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Zhang, Q. F.

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Zhang, W.

Zhang, W. L.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

Zhang, X. M.

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Zhao, Y.

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Zhou, H.

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Zhou, J.

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

Zhou, L.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, Q. F.

D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
[Crossref]

Zhu, Y.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Zhuang, S.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Zhuge, J. C.

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Zillohu, A. U.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Ann. Phys. (Berlin) (1)

S. Y. Cao, W. X. Yu, L. T. Zhang, C. Wang, X. M. Zhang, and Y. Q. Fu, “Broadband efficient light absorbing in the visible regime by a metananoring array,” Ann. Phys. (Berlin) 526(1–2), 112–117 (2014).
[Crossref]

Appl. Phys. Lett. (9)

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. G. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Liu, H. B. Cheng, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(151601), 5 (2015).

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106(7), 071105 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 115(4), 1187–1192 (2014).
[Crossref]

Curr. Appl. Phys. (1)

X. Zhang, Z. Y. Wei, Y. C. Fan, and L. M. Qi, “Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure,” Curr. Appl. Phys. 17(6), 829–834 (2017).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

B. X. Wang, “Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs,” IEEE J. Sel. Top. Quant. 23(4), 4700107 (2017).
[Crossref]

IEEE Photonic. Tech. L. (2)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonic. Tech. L. 28(21), 2335–2338 (2016).
[Crossref]

B. X. Wang, G. Z. Wang, L. L. Wang, and X. Zhai, “Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators,” IEEE Photonic. Tech. L. 28(3), 307–310 (2016).
[Crossref]

IEEE Photonics J. (1)

D. Hu, H. Y. Wang, and Q. F. Zhu, “Design of Six-Band Terahertz Perfect Absorber Using a Simple U-Shaped Closed-Ring Resonator,” IEEE Photonics J. 8(2), 5500608 (2016).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Fardoost, F. G. Vanani, A. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

J. Alloys Compd. (3)

Y. S. Guo, J. S. Li, X. J. Hou, X. L. Lv, H. Liang, and J. Zhou, “A simple topology metamaterial blackbody for visible light,” J. Alloys Compd. 699, 998–1002 (2017).
[Crossref]

C. Y. Luo, D. Li, Q. Luo, J. Yue, P. Gao, J. Q. Yao, and F. R. Ling, “Design of a tunable multiband terahertz waves absorber,” J. Alloys Compd. 652, 18–24 (2015).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

J. Appl. Phys. (1)

S. Liu, J. C. Zhuge, S. J. Ma, H. B. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

J. Opt. (1)

N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17(4), 045105 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (3)

B. X. Wang, G. Z. Wang, and T. Sang, “Simple design of novel triple-band terahertz metamaterial absorber for sensing application,” J. Phys. D Appl. Phys. 49(16), 165307 (2016).
[Crossref]

F. R. Hu, L. Wang, B. G. Quan, X. L. Xu, Z. Li, Z. A. Wu, and X. C. Pan, “Design of a polarization insensitive multiband terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 46(19), 195103 (2013).
[Crossref]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref] [PubMed]

Opt. Commun. (2)

X. J. He, S. T. Yan, Q. X. Ma, Q. F. Zhang, P. Jia, F. M. Wu, and J. X. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17–20 (2013).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

Y. Z. Cheng, Y. Nie, and R. Z. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48, 415–421 (2013).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Photon. Nanostructures (1)

X. W. Li, H. J. Liu, Q. B. Sun, and N. Huang, “Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber,” Photon. Nanostructures 15, 81–88 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

C. Gu, S. Qu, Z. Pei, H. Zhou, J. Wang, B. Lin, Z. Xu, P. Bai, and W. Peng, “A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber,” Prog. Electromagnetics Res. 17, 171–179 (2010).
[Crossref]

Rep. Prog. Phys. (1)

G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Prog. Phys. 69(2), 301–326 (2006).
[Crossref]

Sci. Rep. (3)

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

C. Gong, M. Zhan, J. Yang, Z. Wang, H. Liu, Y. Zhao, and W. Liu, “Broadband terahertz metamaterial absorber based on sectional asymmetric structures,” Sci. Rep. 6(1), 32466 (2016).
[Crossref] [PubMed]

Science (2)

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the (a) unit cell and (b) top view of the broadband THz MA with connected rectangular fish-scale structure.
Fig. 2
Fig. 2 Absorption characteristics of the polarization independent THz MA at normal incidence when the polarization angles vary from 0° to 90°.
Fig. 3
Fig. 3 Surface current distributions of the absorption peak centered at 1.30 THz for the y -polarized incidence.
Fig. 4
Fig. 4 The magnitude distributions of the magnetic fields at the main absorption peaks centered at (a) 0.925 and (b) 1.82 THz, respectively, under the normal y -polarized incidence.
Fig. 5
Fig. 5 (a) The effect of the metal thickness on the absorption of the THz MA. (b) Comparison of the absorption results between the THz MA with the gold thickness of 0.6 and 1.2µm, respectively, under the normal x -polarized incidence.
Fig. 6
Fig. 6 (a) The effect of the dielectric thickness on the absorption of the THz MA. (b) Comparison of the absorption results between the THz MA with the dielectric thickness of 18 and 25µm, respectively, under the normal x -polarized incidence.
Fig. 7
Fig. 7 Absorption characteristics of the THz MA for (a) and (c) TE mode and (b) and (d) TM mode oblique incidences. In (a) and (c), the incident angle is scanned from 0° to 80° for TE and TM mode, respectively. (b) and (d) give the absorption results at incident angles of 0°, 30° and 60° for TE and TM mode, respectively.
Fig. 8
Fig. 8 (a) Comparison of absorption results between the broadband THz MA (shown in Fig. 1) and (b) the MDM sandwich with four connected sub-squares under the normal x -polarized incidence.

Metrics