Abstract

In this paper, metasurfaces are designed, fabricated and experimentally demonstrated to transmit and receive a mixed-mode orbital angular momentum (OAM) vortex wave. Firstly, the theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce the mixed-state vortex wave. Then, simulations and near-field scanning experiments are performed to verify that mixed-state vortex waves can be generated and received by using metasurfaces. The receiving experiments for mixed-mode OAM beam are conducted in the near-field zone, covered frequency band from 4.5 GHz to 7.0 GHz. In transceiving experiments, the TX is the proposed reflective metasurface generating the mixed-state OAM wave (P = 2, l1 = 1, l2 = 2), which is composed of square loop elements. The RX is an OAM receiving metasurface composed by crossed dipole elements, which can receive OAM mode l = 1 in vertical polarization but OAM mode l = 2 in horizontal polarization. Experimental results show that mixed-state vortex waves can be detected, received and separated by pure OAM-mode transmitting and receiving reciprocal metasurfaces. The proposed method paves an effective way to generate and detect the OAM vortex wave of mixed modes for microwave wireless communication and detection applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface

Jiaqi Han, Long Li, Hao Yi, and Yan Shi
Opt. Mater. Express 8(11) 3470-3478 (2018)

Dual-band vortex beam generation with different OAM modes using single-layer metasurface

Chen Ji, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo
Opt. Express 27(1) 34-44 (2019)

Orbital angular momentum generation method based on transformation electromagnetics

Rui Feng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(9) 11708-11717 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref] [PubMed]
  2. M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
    [Crossref] [PubMed]
  3. H. Zhou, J. Dong, S. Yan, Y. Zhou, L. Shi, and X. Zhang, “Manipulation of orbital angular momentum beams based on space diffraction compensation,” Opt. Express 22(15), 17756–17761 (2014).
    [Crossref] [PubMed]
  4. M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Optical trapping with a perfect vortex beam,” Proc. SPIE 9164, 91640K (2014).
  5. V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “An optical tweezer in asymmetrical vortex Bessel-Gaussian beams,” J. Appl. Phys. 120(2), 023101 (2016).
    [Crossref]
  6. M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
    [Crossref]
  7. Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
    [Crossref] [PubMed]
  8. N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
    [Crossref]
  9. D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
    [Crossref] [PubMed]
  10. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref] [PubMed]
  11. S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
    [Crossref]
  12. F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).
  13. O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
    [Crossref]
  14. L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
    [Crossref] [PubMed]
  15. E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
    [Crossref]
  16. F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
    [Crossref]
  17. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1724 (2014).
    [Crossref]
  18. B. Xu, C. Wu, Z. Wei, Y. Fan, and H. Li, “Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase,” Opt. Mater. Express 6(12), 3940–3945 (2016).
    [Crossref]
  19. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
    [Crossref]
  20. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
    [Crossref] [PubMed]
  21. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  22. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  23. V. S. Lyubopytov, A. P. Porfirev, S. O. Gurbatov, S. Paul, M. F. Schumann, J. Cesar, M. Malekizandi, M. T. Haidar, M. Wegener, A. Chipouline, and F. Küppers, “Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter,” Opt. Express 25(9), 9634–9646 (2017).
    [Crossref] [PubMed]
  24. S. G. Reddy, C. Permangatt, S. Prabhakar, A. Anwar, J. Banerji, and R. P. Singh, “Divergence of optical vortex beams,” Appl. Opt. 54(22), 6690–6693 (2015).
    [Crossref] [PubMed]
  25. S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
    [Crossref]
  26. M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
    [Crossref]
  27. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

2017 (2)

2016 (4)

S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

B. Xu, C. Wu, Z. Wei, Y. Fan, and H. Li, “Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase,” Opt. Mater. Express 6(12), 3940–3945 (2016).
[Crossref]

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “An optical tweezer in asymmetrical vortex Bessel-Gaussian beams,” J. Appl. Phys. 120(2), 023101 (2016).
[Crossref]

2015 (8)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
[Crossref] [PubMed]

S. G. Reddy, C. Permangatt, S. Prabhakar, A. Anwar, J. Banerji, and R. P. Singh, “Divergence of optical vortex beams,” Appl. Opt. 54(22), 6690–6693 (2015).
[Crossref] [PubMed]

2014 (2)

2012 (3)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

2011 (1)

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

2010 (2)

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

2007 (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

2004 (1)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

2001 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

1992 (1)

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Alvarez-Herrero, A.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Anwar, A.

Ariste, A. L.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Banerji, J.

Bao, C.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Belenguer, T.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Bergman, J. E. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Bo, T.

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Boyd, R. W.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Carozzi, T. D.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Cesar, J.

Chen, H.

Chen, Y.

Cheng, L.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Chipouline, A.

Coassini, P.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Cui, T. J.

Daldorff, L. K. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Dennis, M. R.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

Ding, D. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, J.

Edfors, O.

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

Fan, Y.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Forozesh, K.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Gelly, B.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Guo, G. C.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Gurbatov, S. O.

Haidar, M. T.

Hao, Z. C.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Hong, W.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Isham, B.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Jack, B.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

Jefimovs, K.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

Jiang, Y. K.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Johansson, A. J.

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

Karlsson, R. L.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Khonina, S. N.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

King, R. P.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

Kong, G. S.

Kotlyar, V. V.

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “An optical tweezer in asymmetrical vortex Bessel-Gaussian beams,” J. Appl. Phys. 120(2), 023101 (2016).
[Crossref]

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

Kovalev, A. A.

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “An optical tweezer in asymmetrical vortex Bessel-Gaussian beams,” J. Appl. Phys. 120(2), 023101 (2016).
[Crossref]

Küppers, F.

Lavery, M. P.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Lavery, M. P. J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Lemen, C.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Li, H.

Li, L.

S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Lyubopytov, V. S.

Ma, H. F.

Ma, Z.

Malekizandi, M.

Mari, E.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Miatto, F. M.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Mohammadi, S. M.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Molisch, A. F.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

O’Holleran, K.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

Oldoni, M.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Padgett, M. J.

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref] [PubMed]

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Palmieri, L.

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Parisi, G.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Paul, S.

Permangatt, C.

Porfirev, A. P.

Prabhakar, S.

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ramos, A. A.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Ravanelli, R. A.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

Reddy, S. G.

Ren, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romanato, F.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Sainz, R. M.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Schumann, M. F.

Shi, B. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Shi, G.

S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Shi, L.

Shi, S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Singh, R. P.

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

Someda, C. G.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Spinello, F.

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Spreeuw, R. J.

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Tamburini, F.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Thide, B.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Thidé, B.

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Tur, M.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Turunen, J.

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

Uribe-Patarroyo, N.

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

Wang, G. Z.

Wang, J.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, X. S.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Wegener, M.

Wei, Z.

Willner, A. E.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Wu, C.

Wu, K.

Xiang, G. Y.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Xie, G.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Xu, B.

Yan, S.

Yan, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yu, S.

S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Z. Ma, H. Chen, K. Wu, Y. Zhang, Y. Chen, and S. Yu, “Self-imaging of orbital angular momentum (OAM) modes in rectangular multimode interference waveguides,” Opt. Express 23(4), 5014–5026 (2015).
[Crossref] [PubMed]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Zhang, W.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Zhang, X.

Zhang, Y.

Zhao, Z.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Zhou, H.

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Zhou, Y.

Zhou, Z. Y.

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Adv. Opt. Photonics (1)

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Yu, L. Li, and G. Shi, “Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface,” Appl. Phys. Express 9(8), 082202 (2016).
[Crossref]

Appl. Phys. Lett. (1)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 5448 (2016).

Astron. Astrophys. (1)

N. Uribe-Patarroyo, A. Alvarez-Herrero, A. L. Ariste, A. A. Ramos, T. Belenguer, R. M. Sainz, C. Lemen, and B. Gelly, “Detecting photons with orbital angular momentum in extended astronomical objects: application to solar observations,” Astron. Astrophys. 526, 202–207 (2011).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

E. Mari, F. Spinello, M. Oldoni, R. A. Ravanelli, F. Romanato, and G. Parisi, “Near-Field Experimental Verification of Separation of OAM Channels,” IEEE Antennas Wirel. Propag. Lett. 14, 556–558 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital Angular Momentum in Radio—A System Study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

O. Edfors and A. J. Johansson, “Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?” IEEE Trans. Antenn. Propag. 60(2), 1126–1131 (2012).
[Crossref]

J. Appl. Phys. (1)

V. V. Kotlyar, A. A. Kovalev, and A. P. Porfirev, “An optical tweezer in asymmetrical vortex Bessel-Gaussian beams,” J. Appl. Phys. 120(2), 023101 (2016).
[Crossref]

J. Mod. Opt. (1)

S. N. Khonina, V. V. Kotlyar, V. A. Soifer, K. Jefimovs, and J. Turunen, “Generation and selection of laser beams represented by a superposition of two angular harmonics,” J. Mod. Opt. 51(5), 761–773 (2004).
[Crossref]

Nat. Photonics (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (1)

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6(2), 118–121 (2010).
[Crossref]

New J. Phys. (2)

F. Tamburini, E. Mari, A. Sponselli, F. Romanato, T. Bo, A. Bianchini, L. Palmieri, and C. G. Someda, “Encoding many channels in the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 811–815 (2012).

M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New J. Phys. 17(2), 023011 (2015).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (2)

Phys. Rev. A (1)

M. W. Beijersbergen, R. J. Spreeuw, L. Allen, and J. P. Woerdman, “Multiphoton resonances and Bloch-Siegert shifts observed in a classical two-level system,” Phys. Rev. A 45(3), 1810–1815 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. S. Ding, W. Zhang, Z. Y. Zhou, S. Shi, G. Y. Xiang, X. S. Wang, Y. K. Jiang, B. S. Shi, and G. C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114(5), 050502 (2015).
[Crossref] [PubMed]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001).
[Crossref] [PubMed]

Radio Sci. (1)

F. Tamburini, E. Mari, G. Parisi, F. Spinello, M. Oldoni, R. A. Ravanelli, P. Coassini, C. G. Someda, B. Thidé, and F. Romanato, “Tripling the capacity of a point-to-point radio link by using electromagnetic vortices,” Radio Sci. 50(6), 501–508 (2015).
[Crossref]

Sci. Rep. (1)

L. Cheng, W. Hong, and Z. C. Hao, “Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Other (1)

M. Chen, M. Mazilu, Y. Arita, E. M. Wright, and K. Dholakia, “Optical trapping with a perfect vortex beam,” Proc. SPIE 9164, 91640K (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Configuration of mixed-state OAM-producing metasurface with square loop elements.
Fig. 2
Fig. 2 (a) Geometry of square loop element and (b) the phase of the reflection coefficient versus the length of the square loop at 5.8GHz. The thickness of the substrate is 1 mm. Behind the substrate, there is an air layer of T = 2.7mm and a metal ground is at the bottom.
Fig. 3
Fig. 3 E-field magnitude of the mixed-state OAM-producing prototype and corresponding identification characteristic, (a) (l1 = 0, l2 = 1), (b) (l1 = 0, l2 = 2), and (c) (l1 = 1, l2 = 2).
Fig. 4
Fig. 4 (a) Layout of the designed metasurface for the mixed-state OAM vortex beam and (b) the fabricated prototype (P = 2, l1 = 1, l2 = 2).
Fig. 5
Fig. 5 Experimental system configuration for the mixed-state OAM wave measurement using near-field scanning technique.
Fig. 6
Fig. 6 Comparison of (a) simulated E-field magnitude, (b) measured E-field magnitude, (c) simulated E-field phase and (d) measured E-field phase of the mixed-state OAM-producing prototype.
Fig. 7
Fig. 7 The principle of receiving the mixed-state OAM beam.
Fig. 8
Fig. 8 Experimental environment for reception and separation of mixed-mode vortex wave.
Fig. 9
Fig. 9 Measured transmission coefficients of different transceiving cases of OAM vortex waves, (a) TX with mixed OAM mode (P = 2, l1 = 1, l2 = 2) and RX with pure OAM mode l = 1 in horizontal polarization, (b) TX with mixed OAM mode (P = 2, l1 = 1, l2 = 2) and RX with pure OAM mode l = 2 in vertical polarization, (c) transceiving experiment in the same OAM mode with RX l = 2 and TX l = 2, (d) transceiving experiment in orthogonal modes with RX l = 1 and TX l = 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E( u ^ )= m=1 M n=1 N F( r mn r f ) A( r mn u ^ 0 )A( u ^ 0 u ^ ) exp{ j k 0 [ | r mn r f |+ r mn u ^ ]+j ϕ mn C }
ϕ mn P =arg[ p=1 P exp( j l p φ mn ) ]
ϕ mn C = ϕ mn P ϕ mn I

Metrics