Abstract

In this work, TiO2 nanotubes were assembled in the hole-conductor-free, carbon counter electrode-based (CH3NH3)PbI3 perovskite solar cells based on the TiO2 nanotube/TiO2 nanoparticle hybrid photoanode under ambient conditions, on which TiO2 nanotubes were uniformly embedded in the hybrid photoanode, and their structure was not affected by the assembly process. Compared with cells based on TiO2 nanoparticles, the cells exhibited a power conversion efficiency of 9.16% that was improved by 40% under similar conditions. The optimized device structure provided effective transport pathways for carrier and carrier recombination was effectively suppressed. In addition, the TiO2 hybrid photoanode ensured efficient light trapping by the sensitizers, leading to an increase in the number of photogenerated carriers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved photovoltaic properties of nominal composition CH3NH3Pb0.99Zn0.01I3 carbon-based perovskite solar cells

Xiang-Yu Zhu, Meng-Wei Chen, Bao Wang, Nan Liu, Mei-Qing Ran, Hao Yang, and Ying-Ping Yang
Opt. Express 26(26) A984-A995 (2018)

Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode

Fangyuan Jiang, Tongfa Liu, Sheng Zeng, Qing Zhao, Xue Min, Zaifang Li, Jinhui Tong, Wei Meng, Sixing Xiong, and Yinhua Zhou
Opt. Express 23(3) A83-A91 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Gibney, “2017 sneak peek: What the new year holds for science,” Nature 541(7635), 14–15 (2016).
    [Crossref] [PubMed]
  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref] [PubMed]
  3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
    [Crossref] [PubMed]
  4. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
    [Crossref] [PubMed]
  5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  6. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
    [Crossref] [PubMed]
  7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
    [Crossref] [PubMed]
  8. S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
    [Crossref]
  9. J. Zhang and T. Pauporté, “Effects of oxide contact layer on the preparation and properties of ch3nh3pbi3 for perovskite solar cell application,” J. Phys. Chem. C 119(27), 14919 (2015).
    [Crossref]
  10. F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
    [Crossref] [PubMed]
  11. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [Crossref] [PubMed]
  12. D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
    [Crossref] [PubMed]
  13. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
    [Crossref] [PubMed]
  14. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
    [Crossref] [PubMed]
  15. C. Bernal and K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3,” J. Phys. Chem. C 118(42), 24383–24388 (2014).
    [Crossref]
  16. C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
    [Crossref]
  17. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
    [Crossref]
  18. M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
    [Crossref]
  19. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
    [Crossref] [PubMed]
  20. G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
    [Crossref] [PubMed]
  21. C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
    [Crossref] [PubMed]
  22. W. A. Laban and L. Etgar, “Depleted Hole Conductor-free Iead Halide Iodide Heterojunction Solar Cells,” Energy Environ. Sci. 6(11), 3249–3253 (2013).
    [Crossref]
  23. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
    [Crossref] [PubMed]
  24. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
    [Crossref] [PubMed]
  25. Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
    [Crossref]
  26. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
    [Crossref] [PubMed]
  27. D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
    [Crossref]
  28. X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
    [Crossref]
  29. H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
    [Crossref]
  30. J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
    [Crossref] [PubMed]
  31. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
    [Crossref] [PubMed]
  32. C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
    [Crossref]
  33. J. Zhang and T. Pauporté, “One-dimensional self-standing TiO2 nanotube array layers designed for perovskite solar cell applications,” ChemPhysChem 16(13), 2836–2841 (2015).
    [Crossref] [PubMed]
  34. X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
    [Crossref] [PubMed]
  35. R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
    [Crossref]
  36. P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
    [Crossref] [PubMed]
  37. X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
    [Crossref]
  38. X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
    [Crossref]
  39. P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
    [Crossref] [PubMed]
  40. X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
    [Crossref] [PubMed]
  41. Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
    [Crossref]
  42. M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
    [Crossref]
  43. T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
    [Crossref]
  44. X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
    [Crossref] [PubMed]
  45. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
    [Crossref] [PubMed]
  46. E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
    [Crossref] [PubMed]
  47. Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
    [Crossref] [PubMed]

2017 (1)

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

2016 (4)

X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
[Crossref]

E. Gibney, “2017 sneak peek: What the new year holds for science,” Nature 541(7635), 14–15 (2016).
[Crossref] [PubMed]

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

2015 (7)

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

J. Zhang and T. Pauporté, “One-dimensional self-standing TiO2 nanotube array layers designed for perovskite solar cell applications,” ChemPhysChem 16(13), 2836–2841 (2015).
[Crossref] [PubMed]

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

J. Zhang and T. Pauporté, “Effects of oxide contact layer on the preparation and properties of ch3nh3pbi3 for perovskite solar cell application,” J. Phys. Chem. C 119(27), 14919 (2015).
[Crossref]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

2014 (16)

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

C. Bernal and K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3,” J. Phys. Chem. C 118(42), 24383–24388 (2014).
[Crossref]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

2013 (9)

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

W. A. Laban and L. Etgar, “Depleted Hole Conductor-free Iead Halide Iodide Heterojunction Solar Cells,” Energy Environ. Sci. 6(11), 3249–3253 (2013).
[Crossref]

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

2012 (4)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

2010 (1)

C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

2008 (1)

J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
[Crossref] [PubMed]

2007 (1)

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

2006 (1)

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

1994 (1)

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

Abate, A.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Abdellah, M.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Ahmad, S.

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Ai, G.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Alcocer, M. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Alshehri, A.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Al-Thabaiti, S. A.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Altomare, M.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Arora, N.

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

Bach, U.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Baikie, T.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Baker, J.

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Batabyal, S. K.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Bernal, C.

C. Bernal and K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3,” J. Phys. Chem. C 118(42), 24383–24388 (2014).
[Crossref]

Bi, D.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Boschloo, G.

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Brivio, F.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Butler, K. T.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Cao, A.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Chabera, P.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Chandiran, A. K.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Chang, J. A.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Chen, C.

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Chen, C. H.

C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
[Crossref]

Chen, H.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Chen, J.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Chen, K.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Chen, K. C.

C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
[Crossref]

Chen, W.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Cheng, M.

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Cheng, Y.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Cheng, Y. B.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Correa Baena, J. P.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Cui, X.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Dar, M. I.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

Decoppet, J. D.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Dkhissi, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Dualeh, A.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Eperon, G. E.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Etgar, L.

W. A. Laban and L. Etgar, “Depleted Hole Conductor-free Iead Halide Iodide Heterojunction Solar Cells,” Energy Environ. Sci. 6(11), 3249–3253 (2013).
[Crossref]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Etheridge, J.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Fabregat-Santiago, F.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Fang, Y.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Feild, C. A.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

Feng, S.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Frank, A. J.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Frost, J. M.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Fujisawa, J.

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

Gao, P.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Gao, X.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Gao, X. F.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Gibney, E.

E. Gibney, “2017 sneak peek: What the new year holds for science,” Nature 541(7635), 14–15 (2016).
[Crossref] [PubMed]

Giordano, F.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Giorgi, G.

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

Gollon, S.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Gonzalez-Elipe, A. R.

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Graetzel, M.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Grätzel, M.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Gray-Weale, A.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Grimes, C. A.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Guan, D.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Guillén, E.

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Guloy, A. M.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

Guo, X.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Hagfeldt, A.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Häggman, L.

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Han, H.

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Harlang, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Harrison, W. T. A.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

He, J. L.

C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
[Crossref]

Hendon, C. H.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Hin, H.

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Ho-Baillie, A.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

Hou, Y.

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Hsiao, S.

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Hu, M.

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Hu, Z. D.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Huang, F.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Huang, W.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Huang, Z.

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Im, J. H.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Jaegermann, W.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Jin, H. H.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Johansson, E. M. J.

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Johnston, M. B.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Juarez-Perez, E. J.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Kadro, J. M.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Kang, H.

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

Kang, M. G.

J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
[Crossref] [PubMed]

Kazim, S.

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

Kim, H. J.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Kim, H. S.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Kirchgeorg, R.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Ko, S.

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Ku, Z.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Kulkarni, S. A.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Laban, W. A.

W. A. Laban and L. Etgar, “Depleted Hole Conductor-free Iead Halide Iodide Heterojunction Solar Cells,” Energy Environ. Sci. 6(11), 3249–3253 (2013).
[Crossref]

Lakus-Wollny, K.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Lee, C. R.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Lee, K.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Lee, K. B.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Lee, T. W.

J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
[Crossref] [PubMed]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Li, F.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Li, J.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Li, X.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Li, Z.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Lim, C. S.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Lin, Y.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Liu, B.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Liu, L.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Liu, T.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Liu, W.

X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
[Crossref]

Liu, Y.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Long, X.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

López-Santos, M. C.

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Luo, J.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Mandal, T. N.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Mankel, E.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Marchioro, A.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Mayer, T.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Mei, A.

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Mhaisalkar, S. G.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Miedaner, A.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Mitzi, D. B.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Moehl, T.

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Mokhtar, M.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Moon, S. J.

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Mor, G. K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Mora-Sero, I.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Moser, J. E.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Nazeeruddin, M. K.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Neale, N. R.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Nguyen, N. T.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Noh, J. H.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Park, J. H.

J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
[Crossref] [PubMed]

Park, N. G.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Pascher, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Paulose, M.

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Pauporté, T.

J. Zhang and T. Pauporté, “One-dimensional self-standing TiO2 nanotube array layers designed for perovskite solar cell applications,” ChemPhysChem 16(13), 2836–2841 (2015).
[Crossref] [PubMed]

J. Zhang and T. Pauporté, “Effects of oxide contact layer on the preparation and properties of ch3nh3pbi3 for perovskite solar cell application,” J. Phys. Chem. C 119(27), 14919 (2015).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Peng, L. M.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Peng, Q.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Peng, Z.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Ponseca, C. S.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Pullerits, T.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Qin, P.

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

Qiu, M.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Ramos, F. J.

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Ren, P.

X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
[Crossref]

Renevier, C.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Rong, Y.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Salazar, R.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Sang, H. I.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Sarkar, A.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Savenije, T. J.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Schenk, K.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Schmuki, P.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

Schreyer, M. K.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Segawa, H.

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

Shankar, K.

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Snaith, H. J.

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Song, P.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Spiccia, L.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Stepanov, A.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Sun, L.

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Sun, M.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Sun, W. T.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Sundström, V.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Tétreault, N.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Teuscher, J.

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Tress, W.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Tripathy, J.

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

van Schilfgaarde, M.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Varghese, O. K.

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Walsh, A.

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Wang, H.

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Wang, J.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Wang, X.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Wei, F.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Wei, Z.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

White, T. J.

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

Wolf, J. P.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Wong, L. H.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Wußler, M.

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Xiao, M.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Xu, M.

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Xu, W.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Xue, Z.

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

Yamashita, K.

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

Yan, K.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Yang, G.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Yang, K.

C. Bernal and K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3,” J. Phys. Chem. C 118(42), 24383–24388 (2014).
[Crossref]

Yang, L.

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Yang, S.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Yang, X.

X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
[Crossref]

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Yang, Y.

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Yartsev, A.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Yi, Y.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Yong, H. L.

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Yuan, C.

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Yum, J. H.

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Zakeeruddin, S. M.

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Zakharova, G. S.

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

Zhang, F.

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang and T. Pauporté, “Effects of oxide contact layer on the preparation and properties of ch3nh3pbi3 for perovskite solar cell application,” J. Phys. Chem. C 119(27), 14919 (2015).
[Crossref]

J. Zhang and T. Pauporté, “One-dimensional self-standing TiO2 nanotube array layers designed for perovskite solar cell applications,” ChemPhysChem 16(13), 2836–2841 (2015).
[Crossref] [PubMed]

Zhang, L.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Zhang, S.

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Zhang, T.

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

Zhang, X.

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Zhang, Y. L.

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

Zhao, J.

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

Zheng, K.

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

Zhu, K.

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

Zhu, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, “Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode,” ACS Appl. Mater. Interfaces 6(18), 16140–16146 (2014).
[Crossref] [PubMed]

ACS Nano (1)

A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells,” ACS Nano 8(1), 362–373 (2014).
[Crossref] [PubMed]

Angew. Chem. (1)

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perowskit als lichtabsorptionsmaterial: ein durchbruch in der photovoltaik,” Angew. Chem. 126(11), 2854–2867 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

J. H. Park, T. W. Lee, and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells,” Chem. Commun. (Camb.) 25(25), 2867–2869 (2008).
[Crossref] [PubMed]

X. Gao, J. Li, J. Baker, Y. Hou, D. Guan, J. Chen, and C. Yuan, “Enhanced photovoltaic performance of perovskite CH3NH3PbI3 solar cells with freestanding TiO2 nanotube array films,” Chem. Commun. (Camb.) 50(48), 6368–6371 (2014).
[Crossref] [PubMed]

Chemelectrochem. (1)

R. Salazar, M. Altomare, K. Lee, J. Tripathy, R. Kirchgeorg, N. T. Nguyen, M. Mokhtar, A. Alshehri, S. A. Al-Thabaiti, and P. Schmuki, “Use of anodic TiO2 nanotube layers as mesoporous scaffolds for fabricating CH3NH3PbI3 perovskite‐based solid‐state solar cells,” Chemelectrochem. 2(6), 824–828 (2015).
[Crossref]

ChemPhysChem (2)

J. Zhang and T. Pauporté, “One-dimensional self-standing TiO2 nanotube array layers designed for perovskite solar cell applications,” ChemPhysChem 16(13), 2836–2841 (2015).
[Crossref] [PubMed]

F. J. Ramos, M. C. López-Santos, E. Guillén, M. K. Nazeeruddin, M. Grätzel, A. R. Gonzalez-Elipe, and S. Ahmad, “Perovskite Solar Cells Based on Nanocolumnar Plasma-Deposited ZnO Thin Films,” ChemPhysChem 15(6), 1148–1153 (2014).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

C. H. Chen, K. C. Chen, and J. L. He, “Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell,” Curr. Appl. Phys. 10(2), S176–S179 (2010).
[Crossref]

Energy Environ. Sci. (2)

Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, “Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites,” Energy Environ. Sci. 7(10), 3326–3333 (2014).
[Crossref]

W. A. Laban and L. Etgar, “Depleted Hole Conductor-free Iead Halide Iodide Heterojunction Solar Cells,” Energy Environ. Sci. 6(11), 3249–3253 (2013).
[Crossref]

J. Am. Chem. Soc. (3)

C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and V. Sundström, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136(14), 5189–5192 (2014).
[Crossref] [PubMed]

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134(42), 17396–17399 (2012).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

J. Mater. Chem. (1)

T. Baikie, Y. Fang, J. M. Kadro, M. K. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications,” J. Mater. Chem. 1(18), 5628–5641 (2013).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (2)

M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, and H. Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3,” J. Mater. Chem. A Mater. Energy Sustain. 2(40), 17115–17121 (2014).
[Crossref]

C. Chen, S. Hsiao, C. Chen, H. Kang, Z. Huang, and H. Hin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 3(17), 9152–9159 (2015).
[Crossref]

J. Phys. Chem. C (3)

C. Bernal and K. Yang, “First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3,” J. Phys. Chem. C 118(42), 24383–24388 (2014).
[Crossref]

J. Zhang and T. Pauporté, “Effects of oxide contact layer on the preparation and properties of ch3nh3pbi3 for perovskite solar cell application,” J. Phys. Chem. C 119(27), 14919 (2015).
[Crossref]

X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li, and L. M. Peng, “An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films,” J. Phys. Chem. C 113(47), 20481–20485 (2013).
[Crossref]

J. Phys. Chem. Lett. (3)

G. Giorgi, J. Fujisawa, H. Segawa, and K. Yamashita, “Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis,” J. Phys. Chem. Lett. 4(24), 4213–4216 (2013).
[Crossref] [PubMed]

E. J. Juarez-Perez, M. Wußler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, and I. Mora-Sero, “Role of the selective contacts in the performance of lead halide perovskite solar cells,” J. Phys. Chem. Lett. 5(4), 680–685 (2014).
[Crossref] [PubMed]

Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, “Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes,” J. Phys. Chem. Lett. 5(12), 2160–2164 (2014).
[Crossref] [PubMed]

Nano Energy (1)

X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode,” Nano Energy 11, 728–735 (2015).
[Crossref]

Nano Lett. (3)

K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Lett. 7(1), 69–74 (2007).
[Crossref] [PubMed]

G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett. 6(2), 215–218 (2006).
[Crossref] [PubMed]

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett. 14(5), 2584–2590 (2014).
[Crossref] [PubMed]

Nanoscale (1)

P. Song, X. Zhang, M. Sun, X. Cui, and Y. Lin, “Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties,” Nanoscale 4(5), 1800–1804 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao, and L. H. Wong, “Wire-shaped perovskite solar cell based on TiO2 nanotubes,” Nanotechnology 27(20), 20LT01 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics 8(7), 506–514 (2014).
[Crossref]

H. H. Jin, H. I. Sang, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, H. L. Yong, H. J. Kim, A. Sarkar, and M. K. Nazeeruddin, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7(6), 486–491 (2013).
[Crossref]

Nature (4)

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature 369(6480), 467–469 (1994).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

E. Gibney, “2017 sneak peek: What the new year holds for science,” Nature 541(7635), 14–15 (2016).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

X. Gao, J. Li, S. Gollon, M. Qiu, D. Guan, X. Guo, J. Chen, and C. Yuan, “A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells,” Phys. Chem. Chem. Phys. 19(7), 4956–4961 (2017).
[Crossref] [PubMed]

Physica E (1)

X. Yang, W. Liu, and P. Ren, “All solid-state solar cells based on CH3NH3PbI3-sensitized TiO2 nanotube arrays,” Physica E 83, 322–328 (2016).
[Crossref]

RSC Advances (2)

Y. Liu, Y. Cheng, K. Chen, Z. Peng, G. Yang, G. S. Zakharova, and W. Chen, “Fabrication of TiO2 nanotube arrays and their application in flexible dye-sensitized solar cells,” RSC Advances 4(85), 45592–45597 (2014).
[Crossref]

D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (ch3nh3pbi3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Advances 3(41), 18762–18766 (2013).
[Crossref]

Sci. Adv. (1)

D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J. P. Correa Baena, J. D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Efficient luminescent solar cells based on tailored mixed-cation perovskites,” Sci. Adv. 2(1), e1501170 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2(8), 591 (2012).
[Crossref] [PubMed]

Science (3)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science 345(6194), 295–298 (2014).
[Crossref] [PubMed]

Small (1)

P. Qin, M. Paulose, M. I. Dar, T. Moehl, N. Arora, P. Gao, O. K. Varghese, M. Grätzel, and M. K. Nazeeruddin, “Stable and efficient perovskite solar cells based on titania nanotube arrays,” Small 11(41), 5533–5539 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of structure and (b) energy band diagram of fabricated devices.
Fig. 2
Fig. 2 (a) XRD patterns of TiO2 hybrid photoanode grown on FTO substrate and devices with different mesoporous structures; (b-c) SEM image and cross-sectional SEM image of as-prepared highly ordered TiO2 nanotube arrays; and (d-f) SEM images of different mesoporous structures after perovskite deposition.
Fig. 3
Fig. 3 (a) Cross-sectional FE-SEM image of PSC based on TiO2 hybrid photoanode; (b-d) Surface mesoporous structures of TiO2 nanoparticles, TiO2 nanotubes, and TiO2 hybrid photoanode, respectively.
Fig. 4
Fig. 4 (a) J-V curves and (b) photovoltaic parameters of fabricated PSCs (12 devices).
Fig. 5
Fig. 5 (a) UV-vis absorption spectra of PSCs based on TiO2 nanotubes, TiO2 nanoparticles, and TiO2 hybrid photoanode and (b) EIS Nyquist plots of PSCs based on TiO2 nanoparticles, TiO2 hybrid photoanode, and TiO2 nanotubes.

Tables (2)

Tables Icon

Table 1 Photovoltaic parameters of PSCs based on TiO2 nanoparticles, TiO2 nanotubes, and TiO2 hybrid photoanodea

Tables Icon

Table 2 Resistivity values of PSCs based on TiO2 nanoparticles, TiO2 nanotubes, and TiO2 hybrid photoanodea

Metrics