Abstract

Single crystalline ZnTe is undoubtedly the leading nonlinear optical material for the promising application of terahertz (THz) generation and detection through optical rectification and electro-optic effect, respectively. In this work, we report the capability of the diluted magnetic semiconductor Zn1-xMnxTe as potential THz emitters and sensors. In Zn1-xMnxTe crystals, a significantly enhanced THz response as high as 10.4%-18.9% (emitter) and 16.9-28.0% (sensor) is observed over intrinsic ZnTe. Both the reduced carrier concentration and the better phase-match condition are proven to be responsible for the enhanced THz emission and detection. The resulting terahertz waves from <110> Zn1-xMnxTe reveal an optimum x value of ~0.028. The magnetic, optical, and electrical properties of as-grown Zn1-xMnxTe crystals have also been evaluated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and electrical properties of vanadium-doped ZnTe crystals grown by the temperature gradient solution method

Bao Xiao, Mengqin Zhu, Binbin Zhang, Jiangpeng Dong, Leilei Ji, Hui Yu, Xiaoyan Sun, Wanqi Jie, and Yadong Xu
Opt. Mater. Express 8(2) 431-439 (2018)

Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann
Opt. Express 15(20) 13212-13220 (2007)

References

  • View by:
  • |
  • |
  • |

  1. I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
    [Crossref]
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  3. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
    [Crossref] [PubMed]
  4. K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
    [Crossref]
  5. Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
    [Crossref]
  6. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [Crossref]
  7. Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71(10), 1285–1286 (1997).
    [Crossref]
  8. S.-H. Lee, J. Lu, S.-J. Lee, J.-H. Han, C.-U. Jeong, S.-C. Lee, X. Li, M. Jazbinšek, W. Yoon, H. Yun, B. J. Kang, F. Rotermund, K. A. Nelson, and O. P. Kwon, “Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation,” Adv. Mater. 2017, 1701748 (2017).
    [Crossref]
  9. H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
    [Crossref]
  10. L. Kai, K. Hyun-Shik, K. Tae-Kyu, S. Woltman, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81, 4115 (2003).
  11. Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
    [Crossref]
  12. S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).
  13. C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
    [Crossref]
  14. F. Wald, “Self‐compensation in CdTe and ZnTe crystals grown from indium solvents,” Phys. Status Solidi 38(1), 253–259 (1976).
    [Crossref]
  15. L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
    [Crossref]
  16. T. Taguchi, “Crystal Growth and Neutral‐Acceptor Bound‐Exciton Emission of ZnCdTe by THM with Te Solvent,” physica status solidi 77, K115 (1983).
    [Crossref]
  17. A. Twardowski, “Magneto-optical study of Zn1− xMnxTe mixed crystals,” Phys. Lett. A 94(2), 103–105 (1983).
    [Crossref]
  18. R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
    [Crossref]
  19. D. N. Bose and S. Bhunia, “High resistivity In-doped ZnTe: electrical and optical properties,” Bull. Mater. Sci. 28(7), 647–650 (2005).
    [Crossref]
  20. W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
    [Crossref]
  21. X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).
  22. S.-W. Han, “Local Structural Properties in the Terahertz Semiconductor Zn1-xCdxTe,” Jpn. J. Appl. Phys. 42(1), 6303–6307 (2003).
    [Crossref]
  23. N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
    [Crossref] [PubMed]
  24. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
    [Crossref] [PubMed]
  25. N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
    [Crossref]
  26. J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64(4), R29–R64 (1988).
    [Crossref]
  27. X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).
  28. Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
    [Crossref] [PubMed]
  29. D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
    [Crossref]
  30. W. Zaleszczyk, E. Janik, P. Dłużewski, S. Kret, W. Szuszkiewicz, A. Presz, J. F. Morhange, E. Dynowska, A. Petroutchik, L. T. Baczewski, G. Karczewski, H. Kirmse, W. Neumann, T. Wojtowicz, M. l. Caldas, and N. Studart, “Zn1−xMnxTe-based diluted magnetic semiconductor nanowire structures grown by MBE,” AIP Conference Proceedings 1199, 267 2010.
  31. J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
    [Crossref] [PubMed]
  32. Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
    [Crossref]
  33. J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
    [Crossref]
  34. D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
    [Crossref] [PubMed]
  35. N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
    [Crossref]
  36. S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
    [Crossref]
  37. X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
    [Crossref]

2016 (1)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

2015 (1)

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

2014 (1)

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

2013 (1)

I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

2012 (3)

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

2011 (3)

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

2010 (1)

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

2007 (1)

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

2006 (1)

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

D. N. Bose and S. Bhunia, “High resistivity In-doped ZnTe: electrical and optical properties,” Bull. Mater. Sci. 28(7), 647–650 (2005).
[Crossref]

2004 (1)

S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).

2003 (1)

S.-W. Han, “Local Structural Properties in the Terahertz Semiconductor Zn1-xCdxTe,” Jpn. J. Appl. Phys. 42(1), 6303–6307 (2003).
[Crossref]

2002 (2)

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

2000 (1)

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

1997 (1)

Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71(10), 1285–1286 (1997).
[Crossref]

1996 (3)

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

1993 (1)

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

1991 (1)

D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
[Crossref]

1988 (2)

J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64(4), R29–R64 (1988).
[Crossref]

Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
[Crossref] [PubMed]

1986 (1)

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

1983 (1)

A. Twardowski, “Magneto-optical study of Zn1− xMnxTe mixed crystals,” Phys. Lett. A 94(2), 103–105 (1983).
[Crossref]

1976 (1)

F. Wald, “Self‐compensation in CdTe and ZnTe crystals grown from indium solvents,” Phys. Status Solidi 38(1), 253–259 (1976).
[Crossref]

Aggarwal, R. L.

Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
[Crossref] [PubMed]

Amenabar, I.

I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Ayta, W. E. F.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

Bajwa, N.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bennett, D. B.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Bhunia, S.

D. N. Bose and S. Bhunia, “High resistivity In-doped ZnTe: electrical and optical properties,” Bull. Mater. Sci. 28(7), 647–650 (2005).
[Crossref]

Bindley, U.

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

Bose, D. N.

D. N. Bose and S. Bhunia, “High resistivity In-doped ZnTe: electrical and optical properties,” Bull. Mater. Sci. 28(7), 647–650 (2005).
[Crossref]

Boulanger, D.

D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
[Crossref]

Brown, E. R.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Camacho, J.

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

Cantarero, A.

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

Chai, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Cibert, J.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Cui, L.

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Culjat, M. O.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Curie, D.

D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
[Crossref]

Dantas, N. O.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

de Mello Donegá, C.

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

Dietl, T.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Dong, J.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Du, Y. Y.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Dudley, M.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Eilers, J.

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Férachou, D.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Ferrand, D.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Freitas Neto, E. S.

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

Fukunaga, K.

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

Furdyna, J.

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

Furdyna, J. K.

J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64(4), R29–R64 (1988).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ge, W.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Gillies, D. C.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Giriat, W.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Groeneveld, E.

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

Grundfest, W. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Hafez, H. A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Han, S.-W.

S.-W. Han, “Local Structural Properties in the Terahertz Semiconductor Zn1-xCdxTe,” Jpn. J. Appl. Phys. 42(1), 6303–6307 (2003).
[Crossref]

Happo, N.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Harrel, S. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Hayashi, S. i.

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

He, Y.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

He, Y. H.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Hosako, I.

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

Hosokawa, S.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Hubschman, J.-P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Ibrahim, A.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Ji, L.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Jie, W.

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Jie, W. Q.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Kealey, C. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Lee, Y. R.

Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
[Crossref] [PubMed]

Lehoczky, S. L.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Li, W.

S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).

Liu, C.

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Liu, X.

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

Loa, I.

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

Lopez, F.

I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Lourenço, S. A.

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

Marques, G. E.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

Matsukura, F.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Meijerink, A.

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

Mendikute, A.

I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Mihara, T.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Milot, R. L.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Mimura, K.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Min, J.

S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).

Mondal, S.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Morais, P. C.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Ogawa, Y.

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

Ohno, H.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ozaki, T.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Pan, A.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Pang, Q.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Parrot, R.

D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
[Crossref]

Pereira-da-Silva, M. A.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

Peterson, D. L.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Petrou, A.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Ramdas, A. K.

Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
[Crossref] [PubMed]

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Rodriguez, S.

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Ropagnol, X.

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

Ryan, J. M.

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Sasaki, Y.

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

Sato, H.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Schleicher, J. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Schmuttenmaer, C. A.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shi, Y.

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Silva, A. S.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

Silva, S. W.

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

Singh, R. S.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Stojadinovic, A.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Su, C.-H.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Sun, X.

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

Syassen, K.

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

Szofran, F. R.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Tang, C.

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Tang, D.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Taniguchi, M.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Taylor, Z. D.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Tewari, P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

Twardowski, A.

A. Twardowski, “Magneto-optical study of Zn1− xMnxTe mixed crystals,” Phys. Lett. A 94(2), 103–105 (1983).
[Crossref]

Ueda, Y.

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

Volz, M. P.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Wald, F.

F. Wald, “Self‐compensation in CdTe and ZnTe crystals grown from indium solvents,” Phys. Status Solidi 38(1), 253–259 (1976).
[Crossref]

Wan, Q.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Wang, J.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Wang, T.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Wang, X.

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Wu, Q.

Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71(10), 1285–1286 (1997).
[Crossref]

Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

Xiao, B.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Xu, Y. D.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Yadong, X.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Yang, M.

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

Yang, Q.

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Yang, R.

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

Yang, S.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Yang, Y.

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Yao, G. D.

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Yu, P. F.

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

Zeng, Y.

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Zhang, B.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Zhang, B.-B.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Zhang, C.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Zhang, L.

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Zhang, Q.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Zhang, X.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Zhang, X. C.

Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71(10), 1285–1286 (1997).
[Crossref]

Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

Zhang Bin, S. W.

S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).

Zhao, L.

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Zheng, H.

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

Zhou, W.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zou, B.

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

Appl. Phys. Lett. (4)

Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Q. Wu and X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71(10), 1285–1286 (1997).
[Crossref]

L. Zhao, B. Zhang, Q. Pang, S. Yang, X. Zhang, W. Ge, and J. Wang, “Chemical synthesis and magnetic properties of dilute magnetic ZnTe: Cr crystals,” Appl. Phys. Lett. 89(9), 092111 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Q. Yang, C. Liu, L. Cui, L. Zhang, and Y. Zeng, “Structural, surface, and electrical properties of nitrogen ion implanted ZnTe epilayers,” Appl. Phys., A Mater. Sci. Process. 116(1), 193–197 (2014).
[Crossref]

Bandaoti Xuebao (1)

S. W. Zhang Bin, W. Li, and J. Min, “Annealing of In-Diffused and In-Doped CdZnTe,” Bandaoti Xuebao 25, 1447 (2004).

Bull. Mater. Sci. (1)

D. N. Bose and S. Bhunia, “High resistivity In-doped ZnTe: electrical and optical properties,” Bull. Mater. Sci. 28(7), 647–650 (2005).
[Crossref]

Chem. Phys. Lett. (1)

N. O. Dantas, A. S. Silva, W. E. F. Ayta, S. W. Silva, P. C. Morais, M. A. Pereira-da-Silva, and G. E. Marques, “Dilute magnetism in Zn1−xMnxTe nanocrystals grown in a glass template,” Chem. Phys. Lett. 541, 44–48 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref] [PubMed]

IEICE Electron. Express (1)

K. Fukunaga, Y. Ogawa, S. i. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express 4(8), 258–263 (2007).
[Crossref]

J. Appl. Phys. (3)

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107(3), 033526 (2010).
[Crossref]

X. Liu, U. Bindley, Y. Sasaki, and J. Furdyna, “Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions,” J. Appl. Phys. 91(5), 2859–2865 (2002).
[Crossref]

J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64(4), R29–R64 (1988).
[Crossref]

J. Cryst. Growth (1)

C.-H. Su, M. P. Volz, D. C. Gillies, F. R. Szofran, S. L. Lehoczky, M. Dudley, G. D. Yao, and W. Zhou, “Growth of ZnTe by physical vapor transport and traveling heater method,” J. Cryst. Growth 128(1-4), 627–632 (1993).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

I. Amenabar, F. Lopez, and A. Mendikute, “In Introductory Review to THz Non-Destructive Testing of Composite Mater,” J. Infrared Millim. Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

J. Inorg. Mater. (1)

Y. D. Xu, W. Q. Jie, T. Wang, P. F. Yu, Y. Y. Du, and Y. H. He, “Correlation between Te-rich Particles in CdZnTe Crystals and Corresponding PL Spectra,” J. Inorg. Mater. 26(4), 359–363 (2011).
[Crossref]

J. Lumin. (1)

D. Boulanger, D. Curie, and R. Parrot, “Strong and very strong covalency effects on the lifetime of Mn2+ in II–VI compounds,” J. Lumin. 48, 680–684 (1991).
[Crossref]

J. Opt. (1)

H. A. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Férachou, X. Ropagnol, and T. Ozaki, “Intense terahertz radiation and their applications,” J. Opt. 18(9), 093004 (2016).
[Crossref]

J. Phys. Chem. C (1)

W. Zhou, D. Tang, A. Pan, Q. Zhang, Q. Wan, and B. Zou, “Structure and Photoluminescence of Pure and Indium-Doped ZnTe Microstructures,” J. Phys. Chem. C 115(5), 1415–1421 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Eilers, E. Groeneveld, C. de Mello Donegá, and A. Meijerink, “Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals,” J. Phys. Chem. Lett. 3(12), 1663–1667 (2012).
[Crossref] [PubMed]

J. Phys. Condens. Matter (2)

N. Happo, H. Sato, T. Mihara, K. Mimura, S. Hosokawa, Y. Ueda, and M. Taniguchi, “Zn, Mn and Te K-edge EXAFS studies of the diluted magnetic semiconductor,” J. Phys. Condens. Matter 8(23), 4315–4323 (1996).
[Crossref]

J. Camacho, I. Loa, A. Cantarero, and K. Syassen, “Vibrational properties of ZnTe at high pressures,” J. Phys. Condens. Matter 14(4), 739–757 (2002).
[Crossref]

Journal of Semiconductors (1)

R. Yang, W. Jie, X. Sun, and M. Yang, “Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method,” Journal of Semiconductors 36(9), 093006 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-W. Han, “Local Structural Properties in the Terahertz Semiconductor Zn1-xCdxTe,” Jpn. J. Appl. Phys. 42(1), 6303–6307 (2003).
[Crossref]

Phys. Chem. Chem. Phys. (1)

N. O. Dantas, A. S. Silva, E. S. Freitas Neto, and S. A. Lourenço, “Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix,” Phys. Chem. Chem. Phys. 14(10), 3520–3529 (2012).
[Crossref] [PubMed]

Phys. Lett. A (1)

A. Twardowski, “Magneto-optical study of Zn1− xMnxTe mixed crystals,” Phys. Lett. A 94(2), 103–105 (1983).
[Crossref]

Phys. Rev. B Condens. Matter (2)

D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, “Raman scattering from the vibrational modes in Zn1-xMnxTe,” Phys. Rev. B Condens. Matter 33(2), 1160–1165 (1986).
[Crossref] [PubMed]

Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II-VI diluted magnetic semiconductors,” Phys. Rev. B Condens. Matter 38(15), 10600–10610 (1988).
[Crossref] [PubMed]

Phys. Status Solidi (1)

F. Wald, “Self‐compensation in CdTe and ZnTe crystals grown from indium solvents,” Phys. Status Solidi 38(1), 253–259 (1976).
[Crossref]

Science (1)

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287(5455), 1019–1022 (2000).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (6)

S.-H. Lee, J. Lu, S.-J. Lee, J.-H. Han, C.-U. Jeong, S.-C. Lee, X. Li, M. Jazbinšek, W. Yoon, H. Yun, B. J. Kang, F. Rotermund, K. A. Nelson, and O. P. Kwon, “Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation,” Adv. Mater. 2017, 1701748 (2017).
[Crossref]

L. Kai, K. Hyun-Shik, K. Tae-Kyu, S. Woltman, and X. C. Zhang, “Study of ZnCdTe crystals as terahertz wave emitters and detectors,” Appl. Phys. Lett. 81, 4115 (2003).

T. Taguchi, “Crystal Growth and Neutral‐Acceptor Bound‐Exciton Emission of ZnCdTe by THM with Te Solvent,” physica status solidi 77, K115 (1983).
[Crossref]

X. Yadong, J. Dong, H. Zheng, B. Xiao, L. Ji, Y. He, C. Zhang, B.-B. Zhang, and W. Jie, “Improvement on the THz response of Zn1-xMnxTe bulk crystals grown by temperature gradient solution method,” CrystEngComm, in press (2017).

X. Wang, X. C. Zhang, Y. Shi, J. M. Ryan, C. Zhang, Y. Yang, and C. Tang, “Characterization of doped ZnCdTe crystals as THz emitters,” SPIE 7385, 738507 (2009).

W. Zaleszczyk, E. Janik, P. Dłużewski, S. Kret, W. Szuszkiewicz, A. Presz, J. F. Morhange, E. Dynowska, A. Petroutchik, L. T. Baczewski, G. Karczewski, H. Kirmse, W. Neumann, T. Wojtowicz, M. l. Caldas, and N. Studart, “Zn1−xMnxTe-based diluted magnetic semiconductor nanowire structures grown by MBE,” AIP Conference Proceedings 1199, 267 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Magnetic field dependent magnetizations of Zn1- x Mn x Te for (a) x = 0.015 and (b) x = 0.034) at various temperatures. The inset shows the temperature dependent magnetization of Zn1- x Mn x Te (x = 0.015, 0.034) with 1 T applied magnetic field under FC conditions.
Fig. 2
Fig. 2 (a) PL spectra and UV-Vis-NIR transmission of ZnTe and Zn0.983Mn0.017Te, the insets are photographs of the corresponding crystals, (b) IR spectra of Zn1- x Mn x Te (x = 0, 0.028, 0.031, and 0.034), the inset is the Mn content dependent IR transmission.
Fig. 3
Fig. 3 (a) Raman spectra of Zn1- x Mn x Te (x = 0, 0.028, 0.034) at room temperature with an incident laser wavelength of 785 nm. (b) Fits of LO and I peaks with Gauss functions for Zn0.972Mn0.028Te (top) and LO fit for intrinsic ZnTe (bottom).
Fig. 4
Fig. 4 (a) I-V curves of Zn1- x Mn x Te (x = 0, 0.015, 0.028, 0.034), the inset represents Mn content dependent resistivity. (b) Mn content dependent carrier concentration and (c) carrier mobility of Zn1- x Mn x Te (x = 0, 0.015, 0.028, 0.034). The dashed lines are shown to guide.
Fig. 5
Fig. 5 (a) Time domain THz spectra emitted from Zn1- x Mn x Te (x = 0 and 0.028), (b) The amplitudes of detected spectra of Zn1- x Mn x Te (x = 0.028, 0.031, 0.034), the inset is the Mn content dependent amplitudes. (c) The transmissions of Zn1- x Mn x Te (x = 0.028, 0.031, 0.034) in the range of 0-3 THz, the inset is the Mn content dependent transmissions at 0.75 THz. (d) The calculated refractive index of Zn1- x Mn x Te (x = 0.028, 0.031, 0.034) in the frequency range of 0-3 THz.

Tables (1)

Tables Icon

Table 1 Summary of the fitting parameters of magnetism of Zn1- x Mn x Te single crystals

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = x N A M ZMT S 0 g μ B B S ( S g μ B H k B T e f f )
M H = X + C ( T T C )

Metrics