Abstract

We design, fabricate, and characterize the terahertz integrated resonators on the silicon platform. Based on mode analysis and selection, the high-Q feature of resonators made of low-loss high-resistivity Si material is achieved due to the excitation of the whispering gallery mode on waveguide-coupled single-mode racetrack rings and disk cavities. The experimental results demonstrate that the Q-factor can reach up to 2839 at 218.345 GHz, which is significantly improved compared with conventional THz cavities. These high Q-factor integrated resonators can be used as on-chip terahertz ultrasensitive sensors and as terahertz functional integrated circuits.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing

Pan Ma, Duk-Yong Choi, Yi Yu, Zhiyong Yang, Khu Vu, Thach Nguyen, Arnan Mitchell, Barry Luther-Davies, and Steve Madden
Opt. Express 23(15) 19969-19979 (2015)

Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators

Hongtao Lin, Lan Li, Yi Zou, Sylvain Danto, J. David Musgraves, Kathleen Richardson, Stephen Kozacik, Maciej Murakowski, Dennis Prather, Pao T. Lin, Vivek Singh, Anu Agarwal, Lionel C. Kimerling, and Juejun Hu
Opt. Lett. 38(9) 1470-1472 (2013)

High performance nanophotonic circuits based on partially buried horizontal slot waveguides

Chi Xiong, Wolfram H.P. Pernice, Mo Li, and Hong X. Tang
Opt. Express 18(20) 20690-20698 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  4. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [Crossref]
  5. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
    [Crossref] [PubMed]
  6. J. Xie, L. Zhou, Z. Zou, J. Wang, X. Li, and J. Chen, “Continuously tunable reflective-type optical delay lines using microring resonators,” Opt. Express 22(1), 817–823 (2014).
    [Crossref] [PubMed]
  7. J. Xie, L. Zhou, X. Sun, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Selective excitation of microring resonances using a pulley-coupling structure,” Appl. Opt. 53(5), 878–884 (2014).
    [Crossref] [PubMed]
  8. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
    [Crossref]
  9. E. S. Lee, S. G. Lee, C. S. Kee, and T. I. Jeon, “Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides,” Opt. Express 19(16), 14852–14859 (2011).
    [Crossref] [PubMed]
  10. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
    [Crossref]
  11. V. Astley, B. McCracken, R. Mendis, and D. M. Mittleman, “Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides,” Opt. Lett. 36(8), 1452–1454 (2011).
    [Crossref] [PubMed]
  12. Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
    [Crossref]
  13. L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
    [Crossref]
  14. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  15. N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
    [Crossref]
  16. J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
    [Crossref] [PubMed]
  17. S. Preu, H. G. L. Schwefel, S. Malzer, G. H. Döhler, L. J. Wang, M. Hanson, J. D. Zimmerman, and A. C. Gossard, “Coupled whispering gallery mode resonators in the Terahertz frequency range,” Opt. Express 16(10), 7336–7343 (2008).
    [Crossref] [PubMed]
  18. D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4(7), 809–812 (2017).
    [Crossref] [PubMed]
  19. D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42(21), 4359–4362 (2017).
    [Crossref] [PubMed]
  20. P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
    [Crossref]
  21. W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).
  22. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
    [Crossref]
  23. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [Crossref]
  24. A. Patrovsky and K. Wu, “Substrate integrated image guide (SIIG)-a planar dielectric waveguide technology for millimeter-wave applications,” IEEE Trans. THz Sci. Technol. 54(6), 2872–2879 (2006).
  25. A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).
  26. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44(28), 5937–5946 (2005).
    [Crossref] [PubMed]
  27. N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).
  28. N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).
  29. H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
    [Crossref]
  30. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971).
    [Crossref] [PubMed]
  31. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
    [Crossref]
  32. S. C. Hung, E. Z. Liang, and C. F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol. 27(7), 887–892 (2009).
    [Crossref]
  33. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [Crossref]

2017 (4)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Terahertz whispering gallery mode bubble resonator,” Optica 4(7), 809–812 (2017).
[Crossref] [PubMed]

D. W. Vogt and R. Leonhardt, “Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide,” Opt. Lett. 42(21), 4359–4362 (2017).
[Crossref] [PubMed]

2016 (3)

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

2015 (2)

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

2014 (4)

2013 (1)

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

2012 (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (3)

2009 (3)

S. C. Hung, E. Z. Liang, and C. F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol. 27(7), 887–892 (2009).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[Crossref]

2008 (1)

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[Crossref]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

2006 (2)

A. Patrovsky and K. Wu, “Substrate integrated image guide (SIIG)-a planar dielectric waveguide technology for millimeter-wave applications,” IEEE Trans. THz Sci. Technol. 54(6), 2872–2879 (2006).

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

2005 (2)

2004 (1)

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

1971 (1)

Astley, V.

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Basha, M.

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

Bienstman, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bingham, A. L.

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[Crossref]

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boone, F.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Charlebois, S. A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Chen, J.

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Cheng, Q.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Chormaic, S. N.

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

Dai, J.

Deal, W.

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

Deslandes, D.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Döhler, G. H.

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Gao, Z.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

George, P. A.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

Gigoyan, S.

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

Gossard, A. C.

Grischkowsky, D.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[Crossref]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[Crossref]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Grischkowsky, D. R.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

Hanson, M.

Harsha, S. S.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[Crossref]

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Hui, J.

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

Hung, S. C.

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

Jeon, T. I.

Kee, C. S.

Kimerling, L. C.

Lai, R.

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

Laman, N.

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[Crossref]

Lee, E. S.

Lee, S. G.

Leong, K.

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

Leonhardt, R.

Li, X.

Liang, E. Z.

Lin, C. F.

Lu, L.

Malekabadi, A.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

Malzer, S.

Manolatou, C.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

McCracken, B.

Mei, X. B.

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

Mendis, R.

Mittleman, D. M.

Pang, S.

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

Patrovsky, A.

A. Patrovsky and K. Wu, “Substrate integrated image guide (SIIG)-a planar dielectric waveguide technology for millimeter-wave applications,” IEEE Trans. THz Sci. Technol. 54(6), 2872–2879 (2006).

Preu, S.

Rana, F.

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

Ranjkesh, N.

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

Safavi-Naeini, S.

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

Sarkozy, S.

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

Schwefel, H. G. L.

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shen, L.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Shimabukuro, F.

Siegel, P. H.

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Sparacin, D. K.

Spector, S. J.

Sun, X.

Taeb, A.

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Tien, P. K.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vogt, D. W.

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Wang, J.

Wang, L. J.

Ward, J.

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Wu, J.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Wu, K.

A. Patrovsky and K. Wu, “Substrate integrated image guide (SIIG)-a planar dielectric waveguide technology for millimeter-wave applications,” IEEE Trans. THz Sci. Technol. 54(6), 2872–2879 (2006).

Xie, J.

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Xue, Q.

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

Yang, D.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Yang, T.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Yang, Y.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

Ye, Y.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Yeh, C.

Zandieh, A.

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

Zang, X.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhang, J.

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zheng, X.

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Zhou, L.

Zhu, H.

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

J. Xie, L. Zhou, X. Sun, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Selective excitation of microring resonances using a pulley-coupling structure,” Appl. Opt. 53(5), 878–884 (2014).
[Crossref] [PubMed]

Zhu, X.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

Zhu, Y.

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zimmerman, J. D.

Zou, Z.

Adv. Optical Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-induced Fano resonances in corrugated plasmonic metamaterials,” Adv. Optical Mater. 5(8), 1600960 (2017).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

P. A. George, C. Manolatou, F. Rana, A. L. Bingham, and D. R. Grischkowsky, “Integrated waveguide-coupled terahertz microcavity resonators,” Appl. Phys. Lett. 91(19), 191122 (2007).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009).
[Crossref]

A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007).
[Crossref]

N. Xu, R. Singh, and W. Zhang, “High-Q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

H. Zhu, Q. Xue, J. Hui, and S. Pang, “A 750-1000 GHz H-plane dielectric horn based on silicon technology,” IEEE Trans. Antenn. Propag. 64(12), 5074–5083 (2016).
[Crossref]

IEEE Trans. THz Sci. Technol. (5)

A. Patrovsky and K. Wu, “Substrate integrated image guide (SIIG)-a planar dielectric waveguide technology for millimeter-wave applications,” IEEE Trans. THz Sci. Technol. 54(6), 2872–2879 (2006).

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. THz Sci. Technol. 4(4), 447–453 (2014).

W. Deal, X. B. Mei, K. Leong, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Trans. THz Sci. Technol. 1(1), 25–32 (2011).

N. Ranjkesh, M. Basha, A. Taeb, A. Zandieh, S. Gigoyan, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part I For millimeter-wave integrated circuits,” IEEE Trans. THz Sci. Technol. 5(2), 268–279 (2015).

N. Ranjkesh, M. Basha, A. Taeb, and S. Safavi-Naeini, “Silicon-on-glass dielectric waveguide—Part II: For THz applications,” IEEE Trans. THz Sci. Technol. 5(2), 280–287 (2015).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Plasmonics (1)

Z. Gao, L. Shen, X. Zheng, J. Wu, T. Yang, and D. Yang, “Terahertz plasmonic microcavity with high quality factor and ultrasmall mode volume,” Plasmonics 8(2), 319–324 (2013).
[Crossref]

Sci. Rep. (2)

J. Xie, X. Zhu, X. Zang, Q. Cheng, Y. Ye, and Y. Zhu, “High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes,” Sci. Rep. 7(1), 11291 (2017).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of (a) disk cavity structure, (b) racetrack ring cavity structure, and (c) cross-sectional view of waveguides. Optical microscope images of the fabricated sample of (d) disk cavity, (e) racetrack ring cavity, and (f) cross-sections of wafer.
Fig. 2
Fig. 2 Dominant transverse electric field component of distribution of waveguides. (a) E x of E x 11 mode, (b) E y of E x 11 mode, (c) E x of E y 11 mode, (d) E y of E y 11 mode. Simulated |E|2 patterns of the two lowest radial order whispering gallery modes (WGMs) (e) E x 11 and (f) E y 11 .
Fig. 3
Fig. 3 The normalized electric field intensity of (a) the top surface, (b) the sidewalls.
Fig. 4
Fig. 4 Bending loss of waveguide at various radius for E x 11 and E y 11 mode.
Fig. 5
Fig. 5 Experimental setup for THz integrated cavities’ measurements. DUT: device under test.
Fig. 6
Fig. 6 Measured transmission spectra of the disk cavity device for (a) E x 11 mode and (c) E y 11 mode. Fitting results for (b) E x 11 mode and (d) E y 11 mode.
Fig. 7
Fig. 7 Measured transmission spectra of the racetrack ring cavity device for (a) E x 11 mode and (c) E y 11 mode. Fitting results for (b) E x 11 mode and (d) E y 11 mode.
Fig. 8
Fig. 8 Optical microscope images of (a) the disk and (b) the racetrack ring.

Tables (1)

Tables Icon

Table 1 Comparison of Various Terahertz Resonators Obtained from Some Example Devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α s = 4 σ 2 h 2 β(r+2/p) = σ 2 k 0 2 h β E s 2 E 2 dx Δ n 2
| H(f) | 2 = | ta e jβL 1at e jβL | 2

Metrics