Abstract

In the process of information technology, as Moore's law becomes more and more close to the limit, the consensus to combine microelectronics and optoelectronics to develop silicon-based large-scale optoelectronic integration technology is inevitable. As the most important part of silicon photonic devices, a silicon-based light source still attracted great effort. In the traditional research, erbium-doped materials have played an important role in silicon-based light sources. Recent studies demonstrated that the erbium silicate compound had a high net gain attributable to a high erbium concentration that has no insolubility problem. This paper focuses on the theory, designs, simulations, preparation methods, process and device optimizations of the erbium silicate compound optical waveguide amplifier and laser. The erbium silicate compound materials with large optical gains can serve as potential candidates for future silicon-based scale-integrated light-source applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser

Peiqi Zhou, Shengming Wang, Xingjun Wang, Yandong He, Zhiping Zhou, Linjie Zhou, and Kan Wu
Opt. Express 26(13) 16689-16707 (2018)

Low threshold ErxYb(Y)2−xSiO5 nanowire waveguide amplifier

Xingjun Wang, Shengming Wang, and Zhiping Zhou
Appl. Opt. 54(9) 2501-2506 (2015)

Rare earth silicates as gain media for silicon photonics [Invited]

Hideo Isshiki, Fangli Jing, Takuya Sato, Takayuki Nakajima, and Tadamasa Kimura
Photon. Res. 2(3) A45-A55 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  2. Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, “Development trends in silicon photonics,” Chin. Opt. Lett. 11(1), 012501 (2013).
    [Crossref]
  3. E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared (Invited),” Photon. Res. 1(2), 69 (2013).
    [Crossref]
  4. P. Boucaud, M. El Kurdi, A. Ghrib, M. Prost, M. de Kersauson, S. Sauvage, F. Aniel, X. Checoury, G. Beaudoin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, and R. Ossikovski, “Recent advances in germanium emission (Invited),” Photon. Res. 1(3), 102 (2013).
    [Crossref]
  5. N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60(3), 347–349 (1992).
    [Crossref]
  6. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [Crossref] [PubMed]
  7. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [Crossref] [PubMed]
  8. A. J. Kenyon, “Erbium in silicon,” Semicond. Sci. Technol. 20(12), R65–R84 (2005).
    [Crossref]
  9. G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
    [Crossref]
  10. S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
    [Crossref]
  11. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
    [Crossref]
  12. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [Crossref] [PubMed]
  13. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [Crossref] [PubMed]
  14. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref] [PubMed]
  15. G. He and H. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937 (1997).
    [Crossref]
  16. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
    [Crossref] [PubMed]
  17. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  18. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
    [Crossref] [PubMed]
  19. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
    [Crossref] [PubMed]
  20. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  21. P. G. Kik and A. Polman, “Exciton–erbium interactions in Si nanocrystal-doped SiO2,” J. Appl. Phys. 88(4), 1992–1998 (2000).
    [Crossref]
  22. H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
    [Crossref]
  23. K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
    [Crossref]
  24. R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
    [Crossref]
  25. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
    [Crossref]
  26. R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
    [Crossref]
  27. Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
    [Crossref]
  28. Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
    [Crossref] [PubMed]
  29. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
    [Crossref]
  30. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010).
    [Crossref] [PubMed]
  31. X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
    [Crossref]
  32. M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
    [Crossref]
  33. R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
    [Crossref]
  34. M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
    [Crossref] [PubMed]
  35. A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
    [Crossref]
  36. L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
    [Crossref]
  37. Z. C. Liu, L. J. Yin, and C. Z. Ning, “Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire,” in Conf. Lasers and Electro-Optics (2013), CF1I.6.
  38. L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
    [Crossref]
  39. X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
    [Crossref] [PubMed]
  40. H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
    [Crossref]
  41. A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
    [Crossref]
  42. K. Liu and E. Y. B. Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
    [Crossref]
  43. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 772–774 (1997).
    [Crossref] [PubMed]
  44. E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
    [Crossref]
  45. R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
    [Crossref]
  46. L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
    [Crossref]
  47. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
    [Crossref] [PubMed]
  48. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [Crossref] [PubMed]
  49. S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
    [Crossref]
  50. M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
    [Crossref]
  51. J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
    [Crossref]
  52. B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
    [Crossref]
  53. R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
    [Crossref] [PubMed]

2016 (1)

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

2015 (1)

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (6)

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref] [PubMed]

2011 (5)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
[Crossref] [PubMed]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

2010 (4)

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010).
[Crossref] [PubMed]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[Crossref]

2009 (5)

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
[Crossref] [PubMed]

2008 (2)

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

2007 (3)

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

K. Liu and E. Y. B. Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref] [PubMed]

2006 (3)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

2005 (5)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

A. J. Kenyon, “Erbium in silicon,” Semicond. Sci. Technol. 20(12), R65–R84 (2005).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
[Crossref] [PubMed]

2004 (1)

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

2003 (2)

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

2000 (3)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si nanocrystal-doped SiO2,” J. Appl. Phys. 88(4), 1992–1998 (2000).
[Crossref]

1998 (1)

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

1997 (3)

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 772–774 (1997).
[Crossref] [PubMed]

G. He and H. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937 (1997).
[Crossref]

1992 (1)

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60(3), 347–349 (1992).
[Crossref]

Aniel, F.

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref] [PubMed]

Arguirov, T.

Atwater, H.

G. He and H. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937 (1997).
[Crossref]

Atwater, H. A.

Beaudoin, G.

Bessette, J. T.

Bongiorno, C.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

Boninelli, S.

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

Boucaud, P.

Bowers, J.

Bowers, J. E.

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Bruce, A. J.

Buchal, C.

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Cantelar, E.

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

Cardile, P.

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
[Crossref] [PubMed]

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

Caristia, L.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Carius, R.

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

Castagna, M. E.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Chaigneau, M.

Chang, J. S.

Checoury, X.

Chen, Y.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Cockroft, N. J.

Coffa, S.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Cui, J.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Cussó, F.

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

Dal Negro, L.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

De Dood, M. J. A.

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

de Kersauson, M.

Dekorsy, T.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Diest, K. A.

Duan, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Eckau, A.

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

El Kurdi, M.

Fan, F.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005).
[Crossref] [PubMed]

Fang, A. W.

Feng, X.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Franzò, G.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Gao, L. F.

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

Gebel, T.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Ghaffari, A.

Ghrib, A.

Gosnell, T. R.

Grimaldi, M. G.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

Guo, P.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Guo, R.

Guo, R. M.

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Hatami-Hanza, H.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

He, G.

G. He and H. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937 (1997).
[Crossref]

Hehlen, M. P.

Helm, M.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Hong, L. Y.

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

Huang, Y.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Iacona, F.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

Irrera, A.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Isshiki, H.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Jiang, L.

Jiang, L. J.

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Kasper, E.

Kenyon, A. J.

A. J. Kenyon, “Erbium in silicon,” Semicond. Sci. Technol. 20(12), R65–R84 (2005).
[Crossref]

Kik, P. G.

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si nanocrystal-doped SiO2,” J. Appl. Phys. 88(4), 1992–1998 (2000).
[Crossref]

Kimerling, L. C.

Kimura, T.

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

Kittler, M.

Koch, T. L.

Kodama, S.

Koshida, N.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60(3), 347–349 (1992).
[Crossref]

Koyama, H.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60(3), 347–349 (1992).
[Crossref]

Largeau, L.

Lee, H.

Lee, M.

Li, R.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[Crossref]

Li, Y. Z.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Liang, J.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Lifante, G.

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Liu, J.

Liu, K.

K. Liu and E. Y. B. Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

Liu, R. B.

Liu, Z. C.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Lo Savio, R.

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
[Crossref] [PubMed]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Lorenti, S.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Masaki, K.

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Messina, A.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Michel, J.

Miritello, M.

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
[Crossref] [PubMed]

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Monaco, M.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Muscara, A.

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Najafi, S. I.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Ndong, G.

Neufeld, E.

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

Nichols, P. L.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Ning, C. Z.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Ning, H.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Nykolak, G.

Oehme, M.

Ossikovski, R.

Pacifici, D.

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

Pan, A.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

Pan, D.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Paniccia, M. J.

Park, H.

Park, N.

Patel, N.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Piro, A. M.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Polman, A.

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si nanocrystal-doped SiO2,” J. Appl. Phys. 88(4), 1992–1998 (2000).
[Crossref]

Priolo, F.

M. Miritello, P. Cardile, R. Lo Savio, and F. Priolo, “Energy transfer and enhanced 1.54 μm emission in Erbium-Ytterbium disilicate thin films,” Opt. Express 19(21), 20761–20772 (2011).
[Crossref] [PubMed]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Prost, M.

Pun, E. Y. B.

K. Liu and E. Y. B. Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

Qin, G. G.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Ran, G. Z.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Rebohle, L.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Romagnoli, M.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Safavi-Naeini, S.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Sagnes, I.

Sauvage, S.

Savio, R.

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

Scherer, A.

Shearn, M. J.

Shelhammer, D.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

Shin, J. H.

Shmulovich, J.

Shooshtari, A.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Skorupa, W.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Suh, K.

Sun, H.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Sun, J. M.

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

Sun, K.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Sun, M. H.

Sun, X.

Sung, G. Y.

Tan, W.

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref] [PubMed]

Touam, T.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Tu, Z.

Turkdogan, S.

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Vanhoutte, M.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Wang, B.

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

Wang, C. Q.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Wang, L.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

Wang, S.

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

Wang, S. M.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Wang, X.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, “Development trends in silicon photonics,” Chin. Opt. Lett. 11(1), 012501 (2013).
[Crossref]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref] [PubMed]

Wang, X. J.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Wang, Y. G.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref] [PubMed]

Xu, C.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Xu, W. J.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Yang, S.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Yariv, A.

Ye, R.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Yerci, S.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[Crossref]

Yi, H.

Yin, B.

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, “Development trends in silicon photonics,” Chin. Opt. Lett. 11(1), 012501 (2013).
[Crossref]

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

Yin, L. J.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

A. Pan, L. J. Yin, Z. C. Liu, M. H. Sun, R. B. Liu, P. L. Nichols, Y. G. Wang, and C. Z. Ning, “Single-crystal erbium chloride silicate nanowires as a Si-compatible light emission material in communication wavelength,” Opt. Mater. Express 1(7), 1202–1209 (2011).
[Crossref]

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Yin, Y.

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Yu, L.

Yuan, G.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zadok, A.

Zang, K.

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

Zhang, Q.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhao, G. J.

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

Zhao, S. L.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Zheng, Y. Z.

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Zhou, H.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhou, Z.

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

Z. Zhou, Z. Tu, B. Yin, W. Tan, L. Yu, H. Yi, and X. Wang, “Development trends in silicon photonics,” Chin. Opt. Lett. 11(1), 012501 (2013).
[Crossref]

R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, “Optical amplification in Er/Yb silicate slot waveguide,” Opt. Lett. 37(9), 1427–1429 (2012).
[Crossref] [PubMed]

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zhou, Z. P.

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

Zhu, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Zhuang, X.

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Appl. Phys. Lett. (10)

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60(3), 347–349 (1992).
[Crossref]

G. Franzò, S. Boninelli, D. Pacifici, F. Priolo, F. Iacona, and C. Bongiorno, “Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2,” Appl. Phys. Lett. 82(22), 3871–3873 (2003).
[Crossref]

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[Crossref]

H. Isshiki, M. J. A. De Dood, A. Polman, and T. Kimura, “Self-assembled infrared-luminescent Er-Si-O crystallites on silicon,” Appl. Phys. Lett. 85(19), 4343–4345 (2004).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. P. Zhou, “Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates,” Appl. Phys. Lett. 98(7), 079103 (2011).
[Crossref]

L. J. Yin, H. Ning, S. Turkdogan, Z. C. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

L. J. Yin, D. Shelhammer, G. J. Zhao, Z. C. Liu, and C. Z. Ning, “Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material,” Appl. Phys. Lett. 103(12), 121902 (2013).
[Crossref]

R. M. Guo, X. J. Wang, K. Zang, B. Wang, L. J. Jiang, and Z. P. Zhou, “Optical amplification in Er/Yb silicate strip loaded waveguide,” Appl. Phys. Lett. 99(16), 161115 (2011).
[Crossref]

S. Wang, A. Eckau, E. Neufeld, R. Carius, and C. Buchal, “Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes,” Appl. Phys. Lett. 71(19), 2824–2826 (1997).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Wang, R. M. Guo, B. Wang, X. J. Wang, and Z. P. Zhou, “Hybrid Si3N4-Er/Yb Silicate Waveguides for Amplifier Application,” IEEE Photonics Technol. Lett. 24(11), 900–902 (2012).
[Crossref]

J. Appl. Phys. (5)

J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, and T. Gebel, “Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices,” J. Appl. Phys. 97(12), 123513 (2005).
[Crossref]

P. G. Kik and A. Polman, “Exciton–erbium interactions in Si nanocrystal-doped SiO2,” J. Appl. Phys. 88(4), 1992–1998 (2000).
[Crossref]

R. Lo Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043510 (2009).
[Crossref]

R. Savio, M. Miritello, P. Cardile, and F. Priolo, “Concentration dependence of the Er3+ visible and infrared luminescence in Y2−xErxO3 thin films on Si,” J. Appl. Phys. 106(4), 043512 (2009).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

J. Phys. Condens. Matter (2)

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[Crossref]

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009).
[Crossref] [PubMed]

J. Phys.: Condens. Matter (1)

Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 µm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys.: Condens. Matter 21(1), 012204 (2009).
[Crossref]

Laser Photonics Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Mater. Sci. Eng. B (1)

M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, “High efficiency light emitting devices in silicon,” Mater. Sci. Eng. B 105(1–3), 83–90 (2003).
[Crossref]

Nature (3)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Liu and E. Y. B. Pun, “Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun. 273(2), 413–420 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (2)

B. Wang, R. M. Guo, X. J. Wang, L. Y. Hong, B. Yin, L. F. Gao, and Z. Zhou, “Near-infrared electroluminescence in ErYb silicate based light-emitting device,” Opt. Mater. 34(8), 1371–1374 (2012).
[Crossref]

K. Masaki, H. Isshiki, and T. Kimura, “Erbium-Silicon-Oxide crystalline films prepared by MOMBE,” Opt. Mater. 27(5), 876–879 (2005).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

E. Cantelar, G. Lifante, and F. Cussó, “Modelling of Tm3+-doped LiNbO3 waveguide lasers,” Opt. Quantum Electron. 38(1-3), 111–122 (2006).
[Crossref]

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30(4), 249–264 (1998).
[Crossref]

Photon. Res. (2)

Phys. Rev. Lett. (2)

G. He and H. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937 (1997).
[Crossref]

X. Wang, X. Zhuang, S. Yang, Y. Chen, Q. Zhang, X. Zhu, H. Zhou, P. Guo, J. Liang, Y. Huang, A. Pan, and X. Duan, “High gain submicrometer optical amplifier at near-infrared communication band,” Phys. Rev. Lett. 115(2), 027403 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

R. Ye, C. Xu, X. Wang, J. Cui, and Z. Zhou, “Room-temperature near-infrared up-conversion lasing in single-crystal Er-Y chloride silicate nanowires,” Sci. Rep. 6(1), 34407 (2016).
[Crossref] [PubMed]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2(1), 349 (2012).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. J. Kenyon, “Erbium in silicon,” Semicond. Sci. Technol. 20(12), R65–R84 (2005).
[Crossref]

Other (3)

Z. C. Liu, L. J. Yin, and C. Z. Ning, “Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire,” in Conf. Lasers and Electro-Optics (2013), CF1I.6.

M. Vanhoutte, B. Wang, J. Michel, and L. C. Kimerling, “Processing and properties of ytterbium-erbium silicate thin film gain media,” in 6th IEEE Int. Conf. on Group IV Photon. (2009), pp. 63–65.
[Crossref]

H. Sun, L. J. Yin, Z. C. Liu, Y. Z. Zheng, F. Fan, S. L. Zhao, X. Feng, Y. Z. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nature Photon.11(9), (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Energy-levels model of Er-Yb silicate system.
Fig. 2
Fig. 2 Er silicate thin film waveguide structure.
Fig. 3
Fig. 3 Signal net gain vs propagation distance for different input pump powers from 60 mW to 120 mW. The optimum pump length is 1 mm. The gain can reach 11 dB when NEr = 1.6 × 1022 cm−3 and Pp = 100 mW.
Fig. 4
Fig. 4 Signal net gain vs Yb:Er ratio (a) and propagation distance (b). (a) The optimum Yb:Er ratio is 2.3:1. The gain can be improved to 28.5 dB, where L = 1 mm, Pp = 100 mW, and Ntotal = 1.6 × 1022 cm−3. (b) Signal net gain vs propagation distance at Yb:Er ratios from 1:0 to 1:6 at input pump power of 100 mW.
Fig. 5
Fig. 5 Schematic configuration of the Er-Yb silicate waveguide laser.
Fig. 6
Fig. 6 Laser power vs (a) cavity lengths at varying pump powers (20–100 mW). The optimum cavity lengths were approximately 180 μm, 250 μm, 325 μm, 400 μm, and 450 μm for pump powers of 20 mW, 40 mW, 60 mW, 80 mW, and 100 mW, respectively. (b) various optimum cavity lengths. The inset in (b) shows an expanded view of the red-dashed region for pump powers 10–30 mW.
Fig. 7
Fig. 7 (a) PL spectra of ErxY2-xSiO5 films (x = 0-2) at the wavelength pump of 654 nm. (b) Integrated PL intensity from 1400 to 1700 nm and decay time dependent on x value for the ErxY2-xSiO5 films.
Fig. 8
Fig. 8 Decay time of ErxY2-xSiO5 films
Fig. 9
Fig. 9 (a) PL spectra of Er2-xYbxSiO5 (x = 0-2) films on Si(100) substrates at the wavelength pump of 654nm, (b) 1.53µm integrated PL intensity of Er2-xYbxSiO5 films on SiO2/Si substrates and Si(100) substrates as a function of Yb concentration at 980nm and 654 nm pump wavelengths.
Fig. 10
Fig. 10 Decay time of Er2-xYbxSiO5 films on SiO2/Si substrates and Si substrates.
Fig. 11
Fig. 11 (a) PL decays recorded at 1535 nm for α-(Yb1-x-Erx)2Si2O7 at different NEr. (b) PL intensity (left hand scale) and lifetime (right hand scale) at 1535 nm as a function of NYb (bottom scale) in α-(Yb1-x-Erx)2Si2O7. For comparison the decay times (black open triangles) at 1535 nm in α-(Yb1-x-Erx)2Si2O7 as a function of NEr (top scale) have been reported. The blue line is a guide for the eye.
Fig. 12
Fig. 12 The SEM image of “low-Er” waveguide prior to polishing. The scale bar represents 1 µm. The inset shows the calculated TE-mode-profile of the waveguide.
Fig. 13
Fig. 13 The gain characteristics of (a) “low-Er” and (b) “high-Er” waveguide at 1529 nm. Also shown as the inset are the transmission spectra of the waveguides at zero and maximum pump powers. Population inversion is achieved for “low-Er” waveguide, but not for the “high-Er” waveguide.
Fig. 14
Fig. 14 SEM micrograph profile of (a) Er0.1Yb1.9SiO5 strip loaded waveguide amplifier, (b) hybrid Si3N4 Er0.2Yb1.8SiO5 silicate waveguide amplifier, (c) Er0.1Yb1.9SiO5 slot waveguide amplifier Inset: calculated fundamental TE-mode profile of fabricated waveguide.
Fig. 15
Fig. 15 The 1532 nm signal light enhancement as a function of pump power for (a) strip loaded waveguide amplifier, and (b) hybrid Si3N4 silicate waveguide amplifier. (c) The enhancement spectrum at pump power of 372 mW for the slot waveguide amplifier.
Fig. 16
Fig. 16 (a) The schematic cross section view of the device structure. (b) The Er-Yb silicate MIS device’s I-V curve measured on a 1mm2 ITO electrode. (c) The EL spectra of the device at varying current pulse amplitudes (1.5–5 μA).
Fig. 17
Fig. 17 (a) SEM image of an as-grown ECS sample showing long and large wires with high material quality. The wire in the center of the image has a length of 106 μm and diameter of ~800 nm. (b) Spatial-averaged signal enhancement at 1,532 nm as a function of launched pump laser output power, obtained from a single ECS nanowire. A signal enhancement value of 1,014 dB cm−1 was obtained at the maximum pumping level, as marked by the red dashed line.
Fig. 18
Fig. 18 (a) Spectra at 950–1035 nm band under different pump power and the corresponding four energy state model (inset). (b) The dependence of the integrated intensity on the pump power; (i) Magnified view around the threshold point. (ii) Nonlinear response of laser output power with increasing pump power. (c) Spectra of the nanowire around 979 nm in different measurement temperature and the dependence of emission intensity and linewidth of the 979.1 nm peak to the temperature (inset).

Tables (1)

Tables Icon

Table 1 Parameters of an Er/Er-Yb Silicate Waveguide Amplifier

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ N 1 t = R 13 N 1 W 12 N 1 + W 21 N 2 + A 21 N 2 + C 3 N 3 2 C 14 N 1 N 4 K tr N 2 Yb N 1 =0 N 2 t = W 12 N 1 W 21 N 2 A 21 N 2 + A 32 N 3 2 C 2 N 2 2 +2 C 14 N 1 N 4 =0 N 3 t = R 13 N 1 A 32 N 3 2 C 3 N 3 2 + A 43 N 4 + K tr N 2 Yb N 1 =0 N 4 t = A 43 N 4 + C 2 N 2 2 + C 3 N 3 2 C 14 N 1 N 1 =0 N 1 + N 2 + N 3 + N 4 = N Er .
{ N 1 Yb t = R 12 Yb N 1 Yb + R 21 Yb N 2 Yb + A 21 Yb N 2 Yb + K tr N 2 Yb N 1 =0 N 1 Yb t = R 12 Yb N 1 Yb R 21 Yb N 2 Yb A 21 Yb N 2 Yb K tr N 2 Yb N 1 =0 N 1 Yb + N 2 Yb = N Yb .
W 12 = σ 12 ( υ s ) A c h υ s Γ s P s (z)+ j=1 M σ 12 ( υ j ) A c h υ j × Γ s [ P ASE + (z, υ j )+ P ASE (z, υ j )],
W 21 = σ 21 ( υ s ) A c h υ s Γ s P s (z)+ j=1 M σ 21 ( υ j ) A c h υ j × Γ s [ P ASE + (z, υ j )+ P ASE (z, υ j )],
R 3 = σ 13 ( υ p ) A c h υ s Γ p P p (z),
R 12 Yb = σ 12 Yb ( υ p ) A c h υ p Γ p P p (z),
R 21 Yb = σ 21 Yb ( υ p ) A c h υ p Γ p P p (z),
{ d P p (z) dz = Γ p [ σ 13 N 1 (z)+ σ 12 Yb N 1 (z) σ 21 Yb N 2 Yb (z)] P p (z)α( υ p ) P p (z) d P p (z) dz = Γ s [ σ 21 N 2 (z) σ 12 N 1 (z)] P s (z)α( υ s ) P s (z) d P p (z) dz =± Γ s ( υ j )[ σ 21 ( υ j ) N 2 (z) σ 12 ( υ j ) N 1 (z)] P ASE (z, υ j )±α( υ s ) P ASE (z, υ j ) ±mh υ j Δ υ j Γ s ( υ j ) σ 21 ( υ j ) N 2 (z) (j=1,2,...,M) .
G(z)(dB)=101g[ P s (z) P s (0) ] σ 12 N Er Γ s L.
{ d P p ± (z) dz =± Γ p [ σ 13 N 1 (z)+ σ 12 Yb N 1 Yb (z) σ 21 Yb N 2 Yb (z)] P p ± (z)±α( υ p ) P p ± (z) d P p ± (z) dz =± Γ s [ σ 21 N 2 (z) σ 12 N 1 (z)] P s ± (z)±α( υ s ) P s ± (z) d P ASE ± (z, υ j ) dz =± Γ s ( υ j )[ σ 21 ( υ j ) N 2 (z) σ 12 ( υ j ) N 1 (z)] P ASE (z, υ j )±α( υ s ) P ASE (z, υ j ) ±mh υ j Δ υ j Γ s ( υ j ) σ 21 ( υ j ) N 2 (z) (j=1,2,...,M) .

Metrics