Abstract

To obtain a high quantum efficiency transmission-mode GaAlAs photocathode, a photocathode with a graded Al composition structure is designed, in which the Al composition of the emission layer is decreased gradually from bulk to surface, and the outermost layer is GaAs. Based on the graded Al composition structure, GaAlAs photocathodes with different thicknesses of GaAs layers are prepared. The experimental results show that the quantum efficiency of the GaAlAs photocathode in blue-green light significantly increased when the thickness of the outermost GaAs achieves a dozen nanometers. The peak quantum efficiency of a GaAlAs photocathode with a nanoscale GaAs layer could achieve 31%, which appears at 620 nm. The nanoscale surface structure has a quantum confinement effect, which is the main factor in the increased quantum efficiency of the GaAlAs photocathode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of graded bandgap structure on photoelectric performance of transmission-mode AlxGa1-xAs/GaAs photocathode modules

Cheng Feng, Yijun Zhang, Jian Liu, Yunsheng Qian, Xinxin Liu, Feng Shi, and Hongchang Cheng
Appl. Opt. 56(32) 9044-9049 (2017)

Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer

Muchun Jin, Xinlong Chen, Guanghui Hao, Benkang Chang, and Hongchang Cheng
Appl. Opt. 54(28) 8332-8338 (2015)

Comparison of structure and performance between extended blue and standard transmission-mode GaAs photocathode modules

Jing Zhao, Yijun Zhang, Benkang Chang, Junju Zhang, Yajuan Xiong, Feng Shi, Hongchang Cheng, and Dongxu Cui
Appl. Opt. 50(32) 6140-6145 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
    [Crossref]
  2. J. Zou, X. Ge, Y. Zhang, W. Deng, Z. Zhu, W. Wang, X. Peng, Z. Chen, and B. Chang, “Negative electron affinity GaAs wire-array photocathodes,” Opt. Express 24(5), 4632–4639 (2016).
    [Crossref] [PubMed]
  3. X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
    [Crossref]
  4. T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
    [Crossref]
  5. X. Chen, G. Hao, B. Chang, Y. Zhang, J. Zhao, Y. Xu, and M. Jin, “Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system,” Appl. Opt. 52(25), 6272–6277 (2013).
    [Crossref] [PubMed]
  6. T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
    [Crossref]
  7. K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
    [Crossref]
  8. T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
    [Crossref]
  9. X. Chen, M. Jin, Y. Zeng, G. Hao, Y. Zhang, B. Chang, F. Shi, and H. Cheng, “Effect of Cs adsorption on the photoemission performance of GaAlAs photocathode,” Appl. Opt. 53(32), 7709–7715 (2014).
    [Crossref] [PubMed]
  10. R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0 ~x ~ 0.3),” J. Appl. Phys. 45(9), 3896–3898 (1974).
    [Crossref]
  11. X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
    [Crossref]
  12. C. Feng, Y. Zhang, J. Liu, Y. Qian, X. Liu, F. Shi, and H. Cheng, “Effect of graded bandgap structure on photoelectric performance of transmission-mode AlxGa1-xAs/GaAs photocathode modules,” Appl. Opt. 56(32), 9044–9049 (2017).
    [Crossref] [PubMed]
  13. L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
    [Crossref]
  14. A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
    [Crossref]
  15. M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
    [Crossref]
  16. Y. Zhang, Y. Qian, C. Feng, F. Shi, H. Cheng, J. Zou, J. Zhang, and X. Zhang, “Improved activation technique for preparing high-efficiency GaAs photocathodes,” Opt. Mater. Express 7(9), 3456–3465 (2017).
    [Crossref]
  17. J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45(5), 054001 (2006).
    [Crossref]
  18. K. Y. Cheng, “Molecular beam epitaxy technology of III–V compound semiconductors for optoelectronic applications,” Proc. IEEE 85(11), 1694–1714 (1997).
    [Crossref]
  19. S. Adachi, “GaAs, AlAs, and AlGaAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
    [Crossref]
  20. M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
    [Crossref]
  21. P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc. 2004).
  22. D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
    [Crossref]

2017 (2)

2016 (1)

2014 (1)

2013 (2)

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

X. Chen, G. Hao, B. Chang, Y. Zhang, J. Zhao, Y. Xu, and M. Jin, “Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system,” Appl. Opt. 52(25), 6272–6277 (2013).
[Crossref] [PubMed]

2009 (2)

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

2008 (1)

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

2006 (2)

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45(5), 054001 (2006).
[Crossref]

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

2002 (1)

A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

1997 (1)

K. Y. Cheng, “Molecular beam epitaxy technology of III–V compound semiconductors for optoelectronic applications,” Proc. IEEE 85(11), 1694–1714 (1997).
[Crossref]

1995 (1)

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

1992 (1)

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

1990 (1)

K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]

1989 (1)

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

1985 (1)

S. Adachi, “GaAs, AlAs, and AlGaAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

1984 (1)

L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

1974 (1)

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0 ~x ~ 0.3),” J. Appl. Phys. 45(9), 3896–3898 (1974).
[Crossref]

1972 (1)

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlGaAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

Aebi, V. W.

K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]

Briones, F.

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

Brus, L. E.

L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

Burrill, A.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Chang, B.

Chang, B. K.

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45(5), 054001 (2006).
[Crossref]

Chang, X. Y.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Chen, X.

Chen, X. L.

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Chen, Z.

Cheng, H.

Cheng, H. C.

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Cheng, K. Y.

K. Y. Cheng, “Molecular beam epitaxy technology of III–V compound semiconductors for optoelectronic applications,” Proc. IEEE 85(11), 1694–1714 (1997).
[Crossref]

Costello, K. A.

K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]

Deng, W.

Dotor, M. L.

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

Enstrom, R. E.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

Escher, J. S.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

Estrera, J. P.

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

Ettenberg, M.

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0 ~x ~ 0.3),” J. Appl. Phys. 45(9), 3896–3898 (1974).
[Crossref]

Feldmang, D.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Feng, C.

Fisher, D. G.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

Ge, X.

Golmayo, D.

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

Hannon, F. E.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Hao, G.

Hao, G. H.

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Hasselbrack, W. E.

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

Hernandez Garcia, C.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Jin, M.

Kaifu, Y.

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Kimura, I.

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Komatsu, T.

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Krainak, M. A.

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

La Rue, R. A.

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

Lewellen, J.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Liu, J.

Liu, X.

Liu, Z.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

MacMillanlan, H. F.

K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]

Martinelli, R. U.

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0 ~x ~ 0.3),” J. Appl. Phys. 45(9), 3896–3898 (1974).
[Crossref]

Meguro, T.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Motoki, K.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Nakayama, M.

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Nishimura, H.

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Nishitani, T.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Peng, X.

Peterson, S.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Phillips, D. L.

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

Pianetta, P.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Poelker, M.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Qian, Y.

Rao, T.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Recio, M.

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

Rector, M. K.

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

Seddon, E.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Shi, F.

Sinclair, C. K.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Sinor, T. W.

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

Smedley, J.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Sun, X. L.

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

Sun, Y.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

Suzuki, Y.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Sykora, D. F.

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

Tabuchi, M.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Takeda, Y.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Wang, W.

Williams, B. F.

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

Xu, Y.

X. Chen, G. Hao, B. Chang, Y. Zhang, J. Zhao, Y. Xu, and M. Jin, “Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system,” Appl. Opt. 52(25), 6272–6277 (2013).
[Crossref] [PubMed]

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Yoffe, A. D.

A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

Yu, X. H.

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Zeng, Y.

Zhang, J.

Zhang, X.

Zhang, Y.

Zhao, J.

X. Chen, G. Hao, B. Chang, Y. Zhang, J. Zhao, Y. Xu, and M. Jin, “Stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system,” Appl. Opt. 52(25), 6272–6277 (2013).
[Crossref] [PubMed]

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

Zhu, Z.

Zou, J.

Zou, J. J.

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45(5), 054001 (2006).
[Crossref]

Adv. Phys. (1)

A. D. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 51(2), 799–890 (2002).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92(24), 241107 (2008).
[Crossref]

J. Appl. Phys. (5)

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0 ~x ~ 0.3),” J. Appl. Phys. 45(9), 3896–3898 (1974).
[Crossref]

X. L. Chen, J. Zhao, B. K. Chang, X. H. Yu, G. H. Hao, Y. Xu, and H. C. Cheng, “Photoemission characteristics of (Cs, O) activation exponential-doping Ga0.37Al0.63As photocathodes,” J. Appl. Phys. 113(21), 213105 (2013).
[Crossref]

S. Adachi, “GaAs, AlAs, and AlGaAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58(3), R1–R29 (1985).
[Crossref]

M. L. Dotor, M. Recio, D. Golmayo, and F. Briones, “Photoluminescence characterization of gaas quantum well laser structure with AlAs/GaAs superlattices waveguide,” J. Appl. Phys. 72(12), 5861–5866 (1992).
[Crossref]

D. G. Fisher, R. E. Enstrom, J. S. Escher, and B. F. Williams, “Photoelectron surface escape probability of (Ga,In)As: Cs-O in the 0.9 to 1.6 μm,” J. Appl. Phys. 43(9), 3815–3823 (1972).
[Crossref]

J. Chem. Phys. (1)

L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

J. Mod. Opt. (1)

X. L. Sun, M. A. Krainak, W. E. Hasselbrack, R. A. La Rue, and D. F. Sykora, “Single-photon counting at 950-1300nm: using InGaAsP photocathode-GaAs avalanche diode hybrid photomultiplier tubes,” J. Mod. Opt. 56(2–3), 284–295 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48(6), 06FF02 (2009).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557(1), 124–130 (2006).
[Crossref]

Opt. Eng. (1)

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45(5), 054001 (2006).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Proc. IEEE (1)

K. Y. Cheng, “Molecular beam epitaxy technology of III–V compound semiconductors for optoelectronic applications,” Proc. IEEE 85(11), 1694–1714 (1997).
[Crossref]

Proc. SPIE (2)

K. A. Costello, V. W. Aebi, and H. F. MacMillanlan, “Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm,” Proc. SPIE 1243, 99–106 (1990).
[Crossref]

T. W. Sinor, J. P. Estrera, D. L. Phillips, and M. K. Rector, “Extended blue GaAs image intensifiers,” Proc. SPIE 2551, 130–134 (1995).
[Crossref]

Solid State Commun. (1)

M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu, “Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple-quantum-wells,” Solid State Commun. 71(12), 1137–1140 (1989).
[Crossref]

Other (1)

P. N. Prasad, Nanophotonics (John Wiley & Sons, Inc. 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure diagram of transmission-mode GaAlAs photocathode sample with a graded Al composition structure grown by MBE.
Fig. 2
Fig. 2 Diagram of transmission-mode GaAlAs photocathode modules.
Fig. 3
Fig. 3 Transmittance curves of transmission-mode GaAlAs photocathode modules. Curves 1~3 are corresponding to Samples 1~3, respectively.
Fig. 4
Fig. 4 Photocurrent curves of transmission-mode GaAlAs photocathodes. Curves 1~3 are corresponding to the activated photocurrent of Samples 1~3, respectively.
Fig. 5
Fig. 5 Quantum efficiency curves of transmission-mode GaAlAs photocathodes. Curves 1~3 are corresponding to the quantum efficiency of Samples 1~3, respectively.
Fig. 6
Fig. 6 Band structure and surface barrier of transmission-mode GaAlAs photocathode. CBM is the conduction band minimum, VBM is the valence band maximum.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d= λ T /4 n A
Y(hv)1.24 S λ /λ
E g eff = E g bulk + h 2 8 l 2 ( 1 m e * + 1 m h * )

Metrics