Abstract

Porous materials have become ideal candidates for the creation of optical sensors that are able to reach extremely high sensitivities, due to both the possibility to infiltrate the target substances on them and to their large surface-to-volume ratio. In this work, we present a new alternative for the creation of porous optical sensors based on the use of polymeric nanofibers (NFs) layers fabricated by electrospinning. Polyamide 6 (PA6) NFs layers with average diameters lower than 30 nm and high porosities have been used for the creation of Fabry-Pérot optical sensing structures, which have shown an experimental sensitivity up to 1060 nm/RIU (refractive index unit). This high sensitivity, together with the low production cost and the possibility to be manufactured over large areas, make NFs-based structures a very promising candidate for the development of low-cost and high performance optical sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On the sensitivity of generic porous optical sensors

Tom G. Mackay
Appl. Opt. 51(14) 2752-2758 (2012)

Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements

Raffaele Caroselli, Salvador Ponce-Alcántara, Francisco Prats Quilez, David Martín Sánchez, Luis Torrijos Morán, Amadeu Griol Barres, Laurent Bellieres, Hanna Bandarenka, Kseniya Girel, Vitaly Bondarenko, and Jaime García-Rupérez
Opt. Express 25(25) 31651-31659 (2017)

Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes

Yong Tang, Guanwei Liang, Junchi Chen, Shudong Yu, Zongtao Li, Longshi Rao, and Binhai Yu
Opt. Express 25(17) 20598-20611 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Osada, D. Rossi, and E. Danilo, Polymer Sensors and Actuators (Springer, 2000).
  2. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [Crossref] [PubMed]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  4. K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
    [Crossref] [PubMed]
  5. S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
    [Crossref]
  6. J. Villatoro and J. Zubia, “New perspectives in optical crystal fibre sensors [invited],” Opt. Laser Technol. 78(A), 67–75 (2016).
    [Crossref]
  7. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152(4), 259–262 (1998).
    [Crossref]
  8. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
    [Crossref] [PubMed]
  9. H. Ouyang and P. M. Fauchet, “Biosensing using porous silicon optical bandgap structures,” Proc. SPIE 6005, 31–45 (2005).
  10. F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensor Actuat. Biol. Chem. 202, 897–912 (2014).
  11. G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
    [Crossref] [PubMed]
  12. C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
    [Crossref] [PubMed]
  13. S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
    [Crossref]
  14. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).
  15. A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.
  16. Y. Zhao, G. A. Rodriguez, Y. M. Graham, T. Cao, G. Gaur, and S. M. Weiss, “Resonant photonic structures in porous silicon for biosensing,” Proc. SPIE BiOS 10081, 100810D (2017).
  17. R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
    [Crossref] [PubMed]
  18. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  19. M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).
  20. J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
    [Crossref]
  21. S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, Electrospinning: Current Status and Future Trends. Nano-size Polymers: Preparation, Properties, Applications (Springer, 2016), Chap. 4.
  22. Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
    [Crossref]
  23. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [Crossref] [PubMed]
  24. Q. Yu and X. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Pérot interferometer,” Photonic Sens. 1(1), 72–83 (2011).
    [Crossref]
  25. M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
    [Crossref]
  26. D. J. Bergman, “Dielectric-constant of a composite material – A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
    [Crossref]
  27. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
    [Crossref]
  28. D. A. G. Bruggeman, “Calculation of various physics constants in heterogeneous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 416(7), 636–664 (1935).
    [Crossref]
  29. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
    [Crossref]
  30. E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
    [Crossref]
  31. P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
    [Crossref]
  32. Scientific Polymer Products Inc, Refractive Index of Polymers by Index, http://scientificpolymer.com/technical-library/refractive-index-of-polymers-by-index/
  33. P. Heikkilä and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44(10), 3067–3079 (2008).
    [Crossref]
  34. S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
    [Crossref]
  35. T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
    [Crossref]
  36. W. S. Rasband, J. Image, U. S. National Institutes of Health, Bethesda, Maryland, USA, (1997–2016), https://imagej.nih.gov/ij/
  37. C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
    [Crossref] [PubMed]
  38. R. Balili, “Transfer matrix method in nanoopticals,” Int. J. Mod. Phys. Conf. Ser. 17, 159–168 (2012).
    [Crossref]
  39. W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th Edition (CRC Press LLC, 2014–2015), Section 3, pp. 3–4.
  40. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  41. L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
    [Crossref] [PubMed]

2018 (1)

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

2017 (1)

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

2016 (2)

J. Villatoro and J. Zubia, “New perspectives in optical crystal fibre sensors [invited],” Opt. Laser Technol. 78(A), 67–75 (2016).
[Crossref]

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

2015 (3)

G. A. Rodriguez, S. Hu, and S. M. Weiss, “Porous silicon ring resonator for compact, high sensitivity biosensing applications,” Opt. Express 23(6), 7111–7119 (2015).
[Crossref] [PubMed]

M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

2014 (1)

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensor Actuat. Biol. Chem. 202, 897–912 (2014).

2013 (1)

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

2012 (3)

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

R. Balili, “Transfer matrix method in nanoopticals,” Int. J. Mod. Phys. Conf. Ser. 17, 159–168 (2012).
[Crossref]

2011 (3)

Q. Yu and X. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Pérot interferometer,” Photonic Sens. 1(1), 72–83 (2011).
[Crossref]

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

2010 (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

2009 (1)

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

P. Heikkilä and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44(10), 3067–3079 (2008).
[Crossref]

2006 (1)

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

2005 (1)

H. Ouyang and P. M. Fauchet, “Biosensing using porous silicon optical bandgap structures,” Proc. SPIE 6005, 31–45 (2005).

2003 (1)

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

2002 (1)

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

2000 (1)

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).

1998 (2)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152(4), 259–262 (1998).
[Crossref]

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

1997 (3)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

1978 (1)

D. J. Bergman, “Dielectric-constant of a composite material – A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

1965 (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Calculation of various physics constants in heterogeneous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

Acquaroli, L. N.

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

Akkaramongkolporn, P.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Allcock, P.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Anderson, M. A.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Bae, K.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Baek, S.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Balde, M.

M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).

Balili, R.

R. Balili, “Transfer matrix method in nanoopticals,” Int. J. Mod. Phys. Conf. Ser. 17, 159–168 (2012).
[Crossref]

Barillaro, G.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Barrios, C. A.

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Bergman, D. J.

D. J. Bergman, “Dielectric-constant of a composite material – A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

Berli, C. L. A.

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

Bhardwaj, R.

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

Bisi, O.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).

Bourham, M.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Calculation of various physics constants in heterogeneous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Canham, L. T.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Caroselli, R.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Chen, S.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Choi, M.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Cordero, J. O.

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Cox, T. I.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Dancil, K. P.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Dhakate, S.

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

Fauchet, P. M.

H. Ouyang and P. M. Fauchet, “Biosensing using porous silicon optical bandgap structures,” Proc. SPIE 6005, 31–45 (2005).

Gal, M.

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

García-Rupérez, J.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Ghadiri, M. R.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Gupta, B. D.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152(4), 259–262 (1998).
[Crossref]

Harlin, A.

P. Heikkilä and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44(10), 3067–3079 (2008).
[Crossref]

Harraz, F. A.

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensor Actuat. Biol. Chem. 202, 897–912 (2014).

Heikkilä, P.

P. Heikkilä and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44(10), 3067–3079 (2008).
[Crossref]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Hollings, M.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Hou, H.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Hu, S.

Huang, C.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Jha, S. N.

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

Ji, L.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Jomnmalagadda, P.

A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.

Kang, G.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152(4), 259–262 (1998).
[Crossref]

Kim, K.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Koropecki, R. R.

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kovacs, A.

A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.

Kumar, R.

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

Lai, C.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Lee, C.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Lee, J.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Lérondel, G.

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Lin, V. S.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Looyenga, H.

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[Crossref]

Mariani, S.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Martín Sánchez, D.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Mathur, R. B.

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

McCord, M.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Meng, X. Y.

A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.

Mescheder, U.

A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.

Motesharei, K.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Narsaiah, K.

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

Neethirajan, S.

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Ngawhirunpat, T.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Nicklin, S.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Nitanan, T.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Nowak, J.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Opanasopit, P.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Ossicini, S.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).

Ouyang, H.

H. Ouyang and P. M. Fauchet, “Biosensing using porous silicon optical bandgap structures,” Proc. SPIE 6005, 31–45 (2005).

Pacholski, C.

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

Pavesi, L.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).

Perkins, E. A.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Pino, L.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Ponce Alcántara, S.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Prats Quilez, F.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Qiu, H.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Ragavan, K. V.

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Reece, P. J.

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Reeves, C.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Reeves, C. L.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Reneker, D. H.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Rodriguez, G. A.

Rojanarata, T.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Russell, P. S.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Sailor, M. J.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Sharma, R.

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

Shi, Q.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Simons, A. J.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Singla, B.

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

Smith, R. G.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Snow, P.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Snow, P. A.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Sorli, B.

M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Squire, E. K.

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Squirrell, D. J.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Strambini, L. M.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Supaphol, P.

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Tah, A.

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Tedeschi, L.

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Tinsley-Brown, A.

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Torrijos Morán, L.

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Uppal, M.

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

Urteaga, R.

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

Vena, A.

M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).

Villatoro, J.

J. Villatoro and J. Zubia, “New perspectives in optical crystal fibre sensors [invited],” Opt. Laser Technol. 78(A), 67–75 (2016).
[Crossref]

Vitchuli, N.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Weiss, S. M.

Weng, X.

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Ye, Y.

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Yoo, D.

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Yu, Q.

Q. Yu and X. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Pérot interferometer,” Photonic Sens. 1(1), 72–83 (2011).
[Crossref]

Zhang, X.

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

Zheng, W. H.

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Zhou, X.

Q. Yu and X. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Pérot interferometer,” Photonic Sens. 1(1), 72–83 (2011).
[Crossref]

Zubia, J.

J. Villatoro and J. Zubia, “New perspectives in optical crystal fibre sensors [invited],” Opt. Laser Technol. 78(A), 67–75 (2016).
[Crossref]

ACS Sens. (1)

S. Mariani, L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, “10000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors,” ACS Sens. 1(12), 1471–1479 (2016).
[Crossref]

Adv. Mater. Lett. (1)

S. Dhakate, B. Singla, M. Uppal, and R. B. Mathur, “Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers,” Adv. Mater. Lett. 1(3), 200–204 (2010).
[Crossref]

Ann. Phys. (1)

D. A. G. Bruggeman, “Calculation of various physics constants in heterogeneous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Appl. Phys. Lett. (1)

P. J. Reece, G. Lérondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[Crossref]

Eur. Polym. J. (1)

P. Heikkilä and A. Harlin, “Parameter study of electrospinning of polyamide-6,” Eur. Polym. J. 44(10), 3067–3079 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Int. J. Mod. Phys. Conf. Ser. (1)

R. Balili, “Transfer matrix method in nanoopticals,” Int. J. Mod. Phys. Conf. Ser. 17, 159–168 (2012).
[Crossref]

J. Appl. Polym. Sci. (1)

Q. Shi, N. Vitchuli, L. Ji, J. Nowak, M. McCord, M. Bourham, and X. Zhang, “A facile approach to fabricate porous nylon 6 nanofibers using silica nanotemplate,” J. Appl. Polym. Sci. 120(1), 425–433 (2011).
[Crossref]

J. Food Sci. Technol. (1)

K. Narsaiah, S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar, “Optical biosensors for food quality and safety assurance-a review,” J. Food Sci. Technol. 49(4), 383–406 (2012).
[Crossref] [PubMed]

J. Lumin. (1)

E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves, “Light emission from porous silicon single and multiple cavities,” J. Lumin. 80(1–4), 125–128 (1998).
[Crossref]

Korean J. Chem. Eng. (1)

T. Nitanan, P. Opanasopit, P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol, “Effects of processing parameters on morphology of electrospun polystyrene nanofibers,” Korean J. Chem. Eng. 29(2), 173–181 (2012).
[Crossref]

Langmuir (1)

L. N. Acquaroli, R. Urteaga, C. L. A. Berli, and R. R. Koropecki, “Capillary filling in nanostructured porous silicon,” Langmuir 27(5), 2067–2072 (2011).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Nanotechnology (1)

C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, and H. Hou, “Electrospun polymer nanofibres with small diameters,” Nanotechnology 17(6), 1558–1563 (2006).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor with high sensitivity and linear dynamic range,” Opt. Commun. 152(4), 259–262 (1998).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

J. Villatoro and J. Zubia, “New perspectives in optical crystal fibre sensors [invited],” Opt. Laser Technol. 78(A), 67–75 (2016).
[Crossref]

Philos. Trans. R. Soc. Lond. (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

Photonic Sens. (1)

Q. Yu and X. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Pérot interferometer,” Photonic Sens. 1(1), 72–83 (2011).
[Crossref]

Phys. Rep. (1)

D. J. Bergman, “Dielectric-constant of a composite material – A problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978).
[Crossref]

Phys. Status Solidi (1)

M. A. Anderson, A. Tinsley-Brown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi 197(2), 528–533 (2003).
[Crossref]

Physica (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[Crossref]

Proc. SPIE (1)

H. Ouyang and P. M. Fauchet, “Biosensing using porous silicon optical bandgap structures,” Proc. SPIE 6005, 31–45 (2005).

RSC Advances (1)

J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D. Yoo, C. Lee, and K. Kim, “Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing,” RSC Advances 5(88), 71770–71777 (2015).
[Crossref]

Science (2)

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[Crossref] [PubMed]

Sens. Biosensing Res. (1)

S. Neethirajan, X. Weng, A. Tah, J. O. Cordero, and K. V. Ragavan, “Nano-biosensor platforms for detecting food allergens – New trends,” Sens. Biosensing Res. 18, 13–30 (2018).
[Crossref]

Sensor Actuat. Biol. Chem. (2)

F. A. Harraz, “Porous silicon chemical sensors and biosensors: A review,” Sensor Actuat. Biol. Chem. 202, 897–912 (2014).

M. Balde, A. Vena, and B. Sorli, “Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors,” Sensor Actuat. Biol. Chem. 220, 829–839 (2015).

Sensors (Basel) (3)

R. Caroselli, D. Martín Sánchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, and J. García-Rupérez, “Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor,” Sensors (Basel) 17(12), 2813 (2017).
[Crossref] [PubMed]

C. Pacholski, “Photonic crystal sensors based on porous silicon,” Sensors (Basel) 13(4), 4694–4713 (2013).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 6–21 (2000).

Other (7)

A. Kovacs, P. Jomnmalagadda, X. Y. Meng, and U. Mescheder, “Characterization of porous silicon based optical sensor system for biosensor applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2008), pp. 21–26.

Y. Zhao, G. A. Rodriguez, Y. M. Graham, T. Cao, G. Gaur, and S. M. Weiss, “Resonant photonic structures in porous silicon for biosensing,” Proc. SPIE BiOS 10081, 100810D (2017).

Y. Osada, D. Rossi, and E. Danilo, Polymer Sensors and Actuators (Springer, 2000).

Scientific Polymer Products Inc, Refractive Index of Polymers by Index, http://scientificpolymer.com/technical-library/refractive-index-of-polymers-by-index/

S. Mohammadzadehmoghadam, Y. Dong, S. Barbhuiya, L. Guo, D. Liu, R. Umer, X. Qi, and Y. Tang, Electrospinning: Current Status and Future Trends. Nano-size Polymers: Preparation, Properties, Applications (Springer, 2016), Chap. 4.

W. S. Rasband, J. Image, U. S. National Institutes of Health, Bethesda, Maryland, USA, (1997–2016), https://imagej.nih.gov/ij/

W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th Edition (CRC Press LLC, 2014–2015), Section 3, pp. 3–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Theoretical sensitivity of the porous FP sensing layer (in nm/RIU) as a function of the refractive index of the bulk material (nbulk from 1.5 to 3.5) for different porosities (P from 40% to 90%).
Fig. 2
Fig. 2 Needle-free electrospinning system Nanospider 500 from El Marco used for the fabrication of the polymeric NFs layers.
Fig. 3
Fig. 3 (Left) Uncoated polished silicon piece. (Right) Polished silicon piece covered with a PA6 NFs layer deposited by electrospinning.
Fig. 4
Fig. 4 Morphological characterization of representative PA6 NFs layers fabricated during the optimization steps. (a) and (b) corresponds to NFs layers with different defects, obtained with (a) 11 wt% and (b) 10 wt% of PA6, without any salt addition in the polymer solution. Images (c)-(f) shows optimized NFs layers. The electrospinning solution composition has been 9 wt% of PA6 and 1 wt% of KHCOO in (c) and (e); and 6 wt% of PA6 and 5 wt% of pyridine in (d) and (f). Three different magnifications have been used: (a) and (b) 5K (scale bar 5 µm); (c) and (d) 10K (scale bar 1 µm); (e) and (f) 100K (scale bar 100 nm).
Fig. 5
Fig. 5 NFs diameter distribution respect to the percentage of PA6 and the salt content in the electrospinning solution. The average diameter has been statistically determined with the ImageJ processing software [37].
Fig. 6
Fig. 6 Scheme of the set up used to visually determine the specular and diffuse reflectance components of the PA6 NFs layers depending on their average diameter.
Fig. 7
Fig. 7 Photographs of the light reflected by three different samples consisting on a polished silicon wafer (a) without any NFs layer (reference sample); (b) with a NFs layer fabricated using a 9 wt% of PA6 and 1 wt% of KHCOO; (c) with a NFs layer fabricated using a 6 wt% of PA6 and 5 wt% of pyridine.
Fig. 8
Fig. 8 FTIR specular reflectance measurement of a bulk silicon sample (gray color), a NFs layer fabricated with 9 wt% of PA6 and 1 wt% of KHCOO (blue color), and a NFs layer fabricated with 6 wt% of PA6 and 5 wt% of pyridine (orange color). FTIR measurements were performed with a resolution of 4 cm−1 (386 pm) and 12 scans were averaged in order to reduce the noise.
Fig. 9
Fig. 9 Reflectivity spectrum of a NFs FP layer processed with 6 wt% of PA6 and 5 wt% of pyridine, with a deposition time of 20 minutes. A MATLAB function has been used to smooth the spectrum in order to better determine the position of the maxima/minima.
Fig. 10
Fig. 10 (a) FTIR measured spectra for the PSi FP sensing layer having its pores filled with air (initial spectrum) and when acetone is deposited over the porous sample. (b) Temporal evolution of the spectral shift measured for the PSi FP sensing layer. Error bars for the position of the tracked spectral feature are included in the graph.
Fig. 11
Fig. 11 (a) FTIR measured spectra for the PA6 NFs FP sensing layer being filled with air (initial spectrum) and when acetone is deposited over the sample. (b) Temporal evolution of the spectral shift measured for the PA6 NFs FP sensing layer (error bars included).

Tables (1)

Tables Icon

Table 1 Optical and physical properties of the two porous FP layers used in the experiments. Note that air-filled pores and a wavelength of 1500 nm have been considered for the calculations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 n eff d / m,
n eff (2/3) =(1P) n bulk (2/3) +P n void (2/3) ,
S( nm RIU )= Δ λ peak Δ n void ,

Metrics