Abstract

The optical properties and film quality for a series of high-In composition InGaN films grown on ZnO substrate by metal-organic chemical vapor deposition (MOCVD) are characterized by using high resolution X-ray diffraction (HRXRD), Rutherford backscattering (RBS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman scattering spectroscopy (RSS). The In composition is evaluated by analyzing the RBS and PL emission spectra. The XPS measurements revealed the diffusion of Zn atoms from the substrate into InGaN films. All the analyses of experimental measurements have shown that the growth temperature played an important role in indium composition as well as of film quality. An optimum growth temperature is a necessary condition for obtaining high-quality films.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition

Tzu-Yu Wang, Sin-Liang Ou, Kun-Ching Shen, and Dong-Sing Wuu
Opt. Express 21(6) 7337-7342 (2013)

High indium content InGaN films grown by pulsed laser deposition using a dual-compositing target

Kun-Ching Shen, Tzu-Yu Wang, Dong-Sing Wuu, and Ray-Hua Horng
Opt. Express 20(14) 15149-15156 (2012)

Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 6(12) 3733-3740 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Yi. Liang, Xiaodong. Jiang, Devki. N. Talwar, Liangyu. Wan, Gu. Xu, and Z. C. Feng, III-Nitride Materials Devices and Nano-Structures (World Scientific, 2017), Chap. 7.
  2. Z. C. Feng, Handbook of Solid-State Lighting and LEDs (CRC Press, 2017).
  3. S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Jpn. J. Appl. Phys. 31(2), L1457–L1459 (1992).
    [Crossref]
  4. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [Crossref]
  5. B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
    [Crossref]
  6. A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).
  7. S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
    [Crossref]
  8. S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
    [Crossref]
  9. C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells 130, 354–363 (2014).
    [Crossref]
  10. A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).
  11. J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
    [Crossref]
  12. M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
    [Crossref]
  13. S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)
  14. S. Nacer and A. Aissat, “Simulation of InGaN p-i-n double heterojunction solar cells with linearly graded layers,” Optik (Stuttg.) 126(23), 3594–3597 (2015).
    [Crossref]
  15. Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
    [Crossref]
  16. S. R. Routray and T. R. Lenka, “Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting,” Superlattices Microstruct. 111, 776–782 (2017).
    [Crossref]
  17. N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
    [Crossref]
  18. K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
    [Crossref]
  19. Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
    [Crossref]
  20. T. Lin, F. Z. Wang, C. H. Cheng, S. Chen, Z. C. Feng, and G. R. Lin, “Strain-related recombination mechanisms in polar InGaN / GaN MQWs on amorphous SixC1-x buffers,” Opt. Mater. Express 8(5), 1100–1106 (2018).
    [Crossref]
  21. R. Peng, S. Xu, J. Zhang, J. Zhang, J. Du, Y. Zhao, X. Fan, and Y. Hao, “Influence of stress on the optical properties of double InGaN/GaN multiple quantum wells,” Opt. Mater. Express 8(6), 1528–1533 (2018).
    [Crossref]
  22. K. J. Lee, J. Chun, S.-J. Kim, S. Oh, C.-S. Ha, J.-W. Park, S.-J. Lee, J.-C. Song, J. H. Baek, and S.-J. Park, “Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer,” Opt. Express 24(5), 4391–4398 (2016).
    [Crossref] [PubMed]
  23. N. H. Nickel and E. Terukov, eds., Zinc Oxide – a Material for Micro- and Optoelectronic Applications (NATO Science Series II), Vol. 194, and R. Triboulet, V. Munoz-Sanjosé, R. Tena-Zaera, M. C. Martinez-Tomas, and S. Hassani, “The scope of zinc oxide bulk growth”, Chap. 1.
  24. C. Jagadish and S. Pearton, eds., Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).
  25. C. Klingshirn and . Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007)
  26. C. W. Litton, D. C. Reynolds, and T. C. Collins, eds., Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Chichester, 2011).
  27. Z. C. Feng, Handbook of Zinc Oxide and Related Materials (CRC, 2013), Chap. 1.
  28. T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
    [Crossref]
  29. A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
    [Crossref] [PubMed]
  30. S.-Y. Ting, Y.-F. Yao, W.-L. Chung, W.-M. Chang, C.-Y. Chen, H.-T. Chen, C.-H. Liao, H.-S. Chen, C. Hsieh, and C. C. Yang, “Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates,” Opt. Express 20(20), 21860–21874 (2012).
    [Crossref] [PubMed]
  31. N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
    [Crossref]
  32. N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
    [Crossref]
  33. S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
    [Crossref]
  34. S. Nakamura, “Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” J. Cryst. Growth 145(1–4), 911–917 (1994).
    [Crossref]
  35. F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
    [Crossref]
  36. L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
    [Crossref]

2018 (5)

J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
[Crossref]

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

T. Lin, F. Z. Wang, C. H. Cheng, S. Chen, Z. C. Feng, and G. R. Lin, “Strain-related recombination mechanisms in polar InGaN / GaN MQWs on amorphous SixC1-x buffers,” Opt. Mater. Express 8(5), 1100–1106 (2018).
[Crossref]

R. Peng, S. Xu, J. Zhang, J. Zhang, J. Du, Y. Zhao, X. Fan, and Y. Hao, “Influence of stress on the optical properties of double InGaN/GaN multiple quantum wells,” Opt. Mater. Express 8(6), 1528–1533 (2018).
[Crossref]

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

2017 (3)

A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
[Crossref] [PubMed]

S. R. Routray and T. R. Lenka, “Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting,” Superlattices Microstruct. 111, 776–782 (2017).
[Crossref]

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

2016 (2)

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

K. J. Lee, J. Chun, S.-J. Kim, S. Oh, C.-S. Ha, J.-W. Park, S.-J. Lee, J.-C. Song, J. H. Baek, and S.-J. Park, “Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer,” Opt. Express 24(5), 4391–4398 (2016).
[Crossref] [PubMed]

2015 (3)

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

S. Nacer and A. Aissat, “Simulation of InGaN p-i-n double heterojunction solar cells with linearly graded layers,” Optik (Stuttg.) 126(23), 3594–3597 (2015).
[Crossref]

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

2014 (1)

C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells 130, 354–363 (2014).
[Crossref]

2013 (2)

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

2012 (1)

2011 (1)

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

2010 (3)

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

2009 (2)

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

2008 (1)

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

2007 (3)

C. Klingshirn and . Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007)

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

2004 (1)

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

1994 (1)

S. Nakamura, “Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” J. Cryst. Growth 145(1–4), 911–917 (1994).
[Crossref]

1992 (1)

S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Jpn. J. Appl. Phys. 31(2), L1457–L1459 (1992).
[Crossref]

Abderrahim, R.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Aissat, A.

S. Nacer and A. Aissat, “Simulation of InGaN p-i-n double heterojunction solar cells with linearly graded layers,” Optik (Stuttg.) 126(23), 3594–3597 (2015).
[Crossref]

Ajala, F.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Amano, H.

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Arif, M.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Baek, J. H.

Belahsene, S.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Chandan, G.

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Chang, W.-M.

Chen, C.-Y.

Chen, H.-S.

Chen, H.-T.

Chen, S.

Chen, Y.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Cheng, C. H.

Chua, S. J.

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

Chun, J.

Chung, W.-L.

Djebbour, Z.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Doolittle, W. A.

C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells 130, 354–363 (2014).
[Crossref]

Du, J.

El Gmili, Y.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Elhuni, W.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Fabien, C. A. M.

C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells 130, 354–363 (2014).
[Crossref]

Fan, X.

Feng, Z. C.

T. Lin, F. Z. Wang, C. H. Cheng, S. Chen, Z. C. Feng, and G. R. Lin, “Strain-related recombination mechanisms in polar InGaN / GaN MQWs on amorphous SixC1-x buffers,” Opt. Mater. Express 8(5), 1100–1106 (2018).
[Crossref]

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Ferguson, I.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Fujii, T.

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

Fujioka, H.

A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
[Crossref] [PubMed]

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

Gao, F.

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Gao, Y.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Ha, C.-S.

Hamrouni, A.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Hao, Y.

He, M.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Honda, Y.

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Houas, A.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Hsieh, C.

Huang, C. L.

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

Humphreys, C. J.

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Immanuel, P.

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

Jali, V. M.

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Jang, J.

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Jordan, M.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Kajima, T.

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

Kappers, M. J.

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Kim, S.-J.

Klingshirn, .

C. Klingshirn and . Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007)

Klingshirn, C.

C. Klingshirn and . Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007)

Kobayashi, A.

A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
[Crossref] [PubMed]

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

Krupanidhi, S. B.

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Lachheb, H.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Lee, K. J.

Lee, S.

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Lee, S.-J.

Lei, Y.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Lenka, T. R.

S. R. Routray and T. R. Lenka, “Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting,” Superlattices Microstruct. 111, 776–782 (2017).
[Crossref]

Li, N.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Li, X.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Liao, C.-H.

Lien, S. C.

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Lin, G. R.

Lin, T.

Megna, B.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Migan, A.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Mohan, L.

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Mukai, T.

S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Jpn. J. Appl. Phys. 31(2), L1457–L1459 (1992).
[Crossref]

Mukundan, S.

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Nacer, S.

S. Nacer and A. Aissat, “Simulation of InGaN p-i-n double heterojunction solar cells with linearly graded layers,” Optik (Stuttg.) 126(23), 3594–3597 (2015).
[Crossref]

Nakamura, S.

S. Nakamura, “Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” J. Cryst. Growth 145(1–4), 911–917 (1994).
[Crossref]

S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Jpn. J. Appl. Phys. 31(2), L1457–L1459 (1992).
[Crossref]

Nam, O.

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Nause, J.

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Oehler, F.

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Oh, S.

Ohta, J.

A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
[Crossref] [PubMed]

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

Oshima, M.

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

Ougazzaden, A.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Palmisano, L.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Park, E. H.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Park, J.-W.

Park, S.-J.

Parrino, F.

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

Patriarche, G.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Peng, R.

Pravinraj, S.

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

Roul, B.

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Routray, S. R.

S. R. Routray and T. R. Lenka, “Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting,” Superlattices Microstruct. 111, 776–782 (2017).
[Crossref]

Salvestrini, J. P.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Shimomoto, K.

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

Sinha, N.

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Slaoui, A.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Song, J.-C.

Streque, J.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Summers, C.

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

Sundaram, S.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Thiruneelakandan, R.

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

Ting, S.-Y.

Tripathy, S.

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

Tsai, H. L.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

Tse, K.

J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
[Crossref]

Ueno, K.

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

Valencia, A.

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Velanganni, S.

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

Voss, P. L.

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Wang, F. Z.

Wang, L. S.

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

Wang, S. J.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

Wang, S.-J.

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

Xu, J.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Xu, S.

Yang, C. C.

Yang, J. R.

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

Yao, Y.-F.

Yu, H. B.

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

Zang, K. Y.

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

Zhang, J.

Zhang, L.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Zhang, Y.

J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
[Crossref]

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Zhao, Y.

Zhou, J.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

Zhu, D.

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Zhu, J.

J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
[Crossref]

Zhu, K.

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

AIP Adv. (1)

B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S. B. Krupanidhi, “Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces,” AIP Adv. 5(3), 037130 (2015).
[Crossref]

Appl. Phys. Express (2)

K. Shimomoto, A. Kobayashi, K. Ueno, J. Ohta, M. Oshima, and H. Fujioka, “Characteristics of thick m-plane ingan films grown on ZnO substrates using room temperature epitaxial buffer layers,” Appl. Phys. Express 3(6), 061001 (2010).
[Crossref]

T. Kajima, A. Kobayashi, K. Shimomoto, K. Ueno, T. Fujii, J. Ohta, H. Fujioka, and M. Oshima, “Layer-by-layer growth of InAlN films on ZnO(0001̄) substrates at room temperature,” Appl. Phys. Express 3(2), 021001 (2010).
[Crossref]

Appl. Phys. Lett. (2)

L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN: Si films grown on Si (111) substrates,” Appl. Phys. Lett. 85(24), 5881–5883 (2004).
[Crossref]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Appl. Surf. Sci. (1)

F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, and F. Parrino, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water,” Appl. Surf. Sci. 445, 376–382 (2018).
[Crossref]

ChemPhysChem (1)

C. Klingshirn and . Klingshirn, “ZnO: Material, Physics and Applications,” ChemPhysChem 8(6), 782–803 (2007)

IEEE/OSA J. Display Tech. (1)

Y. Lei, J. Xu, K. Zhu, M. He, J. Zhou, Y. Gao, L. Zhang, and Y. Chen, “A GaN-based LED with perpendicular structure fabricated on a ZnO substrate by MOCVD,” IEEE/OSA J. Display Tech. 9(5), 377–381 (2013).
[Crossref]

J. Appl. Phys. (1)

S. J. Wang, N. Li, E. H. Park, S. C. Lien, Z. C. Feng, A. Valencia, J. Nause, and I. Ferguson, “Metalorganic chemical vapor deposition of InGaN layers on ZnO substrates,” J. Appl. Phys. 102(10), 106105 (2007).
[Crossref]

J. Cryst. Growth (3)

S. Nakamura, “Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” J. Cryst. Growth 145(1–4), 911–917 (1994).
[Crossref]

N. Li, S. J. Wang, C. L. Huang, Z. C. Feng, A. Valencia, J. Nause, C. Summers, and I. Ferguson, “Effect of an Al2O3 transition layer on InGaN on ZnO substrates by organometallic vapor-phase epitaxy,” J. Cryst. Growth 310(23), 4908–4912 (2008).
[Crossref]

N. Li, S. J. Wang, E. H. Park, Z. C. Feng, H. L. Tsai, J. R. Yang, and I. Ferguson, “Suppression of phase separation in InGaN layers grown on lattice-matched ZnO substrates,” J. Cryst. Growth 311(22), 4628–4631 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

S.-J. Wang, N. Li, H. B. Yu, Z. C. Feng, C. Summers, and I. Ferguson, “Metalorganic chemical vapour deposition of GaN layers on ZnO substrates using α-Al2O3 as a transition layer,” J. Phys. D Appl. Phys. 42(24), 245302 (2009).
[Crossref]

Jap. J. Appl. Phys. (1)

S. Lee, Y. Honda, H. Amano, J. Jang, and O. Nam, “Study of enhanced photovoltaic behavior in InGaN-based solar cells by using SiNx insertion layer: Influence of dislocations,” Jap. J. Appl. Phys. 55, 3 (2016)

Jpn. J. Appl. Phys. (1)

S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Jpn. J. Appl. Phys. 31(2), L1457–L1459 (1992).
[Crossref]

Mater. Res. Bull. (1)

N. Sinha, B. Roul, S. Mukundan, G. Chandan, L. Mohan, V. M. Jali, and S. B. Krupanidhi, “Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE,” Mater. Res. Bull. 61, 539–543 (2015).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

S. Nacer and A. Aissat, “Simulation of InGaN p-i-n double heterojunction solar cells with linearly graded layers,” Optik (Stuttg.) 126(23), 3594–3597 (2015).
[Crossref]

Phys. Rev. Mater. (1)

J. Zhang, Y. Zhang, K. Tse, and J. Zhu, “Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate,” Phys. Rev. Mater. 2(1), 013403 (2018).
[Crossref]

Phys. Stat. Sol. (A) Appl. and Mater. Sci. (1)

A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Coherent growth of r-plane GaN films on ZnO substrates at room temperature,” Phys. Stat. Sol. (A) Appl. and Mater. Sci. 208(4), 834–837 (2011).

Phys. Stat. Sol. - Rapid Research Lett. (1)

A. Kobayashi, K. Shimomoto, J. Ohta, H. Fujioka, and M. Oshima, “Optical polarization characteristics of m-plane InGaN films coherently grown on ZnO substrates,” Phys. Stat. Sol. - Rapid Research Lett. 4(8–9), 188–190 (2010).

Physica B (1)

S. Velanganni, S. Pravinraj, P. Immanuel, and R. Thiruneelakandan, “Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue,” Physica B 534(1), 56–62 (2018).
[Crossref]

Sci. Rep. (1)

A. Kobayashi, J. Ohta, and H. Fujioka, “Pulsed sputtering epitaxial growth of m-plane InGaN lattice-matched to ZnO,” Sci. Rep. 7(1), 12820 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

C. A. M. Fabien and W. A. Doolittle, “Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells,” Sol. Energy Mater. Sol. Cells 130, 354–363 (2014).
[Crossref]

M. Arif, W. Elhuni, J. Streque, S. Sundaram, S. Belahsene, Y. El Gmili, M. Jordan, X. Li, G. Patriarche, A. Slaoui, A. Migan, R. Abderrahim, Z. Djebbour, P. L. Voss, J. P. Salvestrini, and A. Ougazzaden, “Improving InGaN heterojunction solar cells efficiency using a semibulk absorber,” Sol. Energy Mater. Sol. Cells 159(9), 405–411 (2017).
[Crossref]

Y. Zhang, M. J. Kappers, D. Zhu, F. Oehler, F. Gao, and C. J. Humphreys, “The effect of dislocations on the efficiency of InGaN/GaN solar cells,” Sol. Energy Mater. Sol. Cells 117, 279–284 (2013).
[Crossref]

Superlattices Microstruct. (1)

S. R. Routray and T. R. Lenka, “Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting,” Superlattices Microstruct. 111, 776–782 (2017).
[Crossref]

Other (6)

Yi. Liang, Xiaodong. Jiang, Devki. N. Talwar, Liangyu. Wan, Gu. Xu, and Z. C. Feng, III-Nitride Materials Devices and Nano-Structures (World Scientific, 2017), Chap. 7.

Z. C. Feng, Handbook of Solid-State Lighting and LEDs (CRC Press, 2017).

N. H. Nickel and E. Terukov, eds., Zinc Oxide – a Material for Micro- and Optoelectronic Applications (NATO Science Series II), Vol. 194, and R. Triboulet, V. Munoz-Sanjosé, R. Tena-Zaera, M. C. Martinez-Tomas, and S. Hassani, “The scope of zinc oxide bulk growth”, Chap. 1.

C. Jagadish and S. Pearton, eds., Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, 2006).

C. W. Litton, D. C. Reynolds, and T. C. Collins, eds., Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Chichester, 2011).

Z. C. Feng, Handbook of Zinc Oxide and Related Materials (CRC, 2013), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (A) Experimental HRXRD 2-theta wide scans for the InGaN/GaN/ZnO samples (S1, S2, S3, S4 and S5) grown at 656°C, 680°C, 700°C, 720°C and 720°C, respectively. (B) Experimental HRXRD 2-theta fine scans for the InGaN/GaN/ZnO samples (S1, S2, S3, S4 and S5). (C) 2θ – ω HR-XRD scanning curve of GaN films grown on ZnO substrate.
Fig. 2
Fig. 2 Random RBS spectra of three and two InGaN/GaN/ZnO samples with InGaN layer were grown at A (656, 700 and 720°C) and B (680 and 736°C), respectively.
Fig. 3
Fig. 3 Random and simulated RBS spectra of InxGa1-xN/GaN/ZnO samples with InGaN grown at (A) (656°C, x = 0.65) and (B) (680°C, x = 0.65).
Fig. 4
Fig. 4 The relation of growth temperature and Indium concentration.
Fig. 5
Fig. 5 (A) The PL spectra of three different Indium fractions at room temperature, and (B) Raman spectrum of InGaN/GaN/ZnO structure with Indium fraction of 0.52 (680°C).
Fig. 6
Fig. 6 (A) Raman spectrum of A1(LO) mode for Four different In fractions in InGaN epilayers. (B) Observed frequency for A1(LO) mode of InGaN alloy versus In fraction.
Fig. 7
Fig. 7 XPS survey scan for an InxGa1-xN/GaN/ZnO, S5.
Fig. 8
Fig. 8 XPS fine scans and fits for five InxGa1-xN/GaN/ZnO on (A) Ga 3d peak and (B) In 3d peak.
Fig. 9
Fig. 9 XPS fine scans and fits for five InxGa1-xN/GaN/ZnO on (A) N 1s peak and (B) Zn 2P3/2 peak.

Tables (3)

Tables Icon

Table 1 RBS fitting sample’s information

Tables Icon

Table 2 The fitting details of XPS fine scans data simulated by Lorentzian-Gaussian fitting method about the peaks Ga 3d, In 3d5/2 and N 1s for five InGaN films.

Tables Icon

Table 3 The fitting details of XPS fine scans data simulated by Lorentzian-Gaussian fitting method about the peaks Zn 2P3/2 for five InGaN films.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E g ( x )=3.420.65x3.4159x( 1x )
Y=624+421x885 x 2

Metrics