Abstract

In this article, we explore a mechanically tunable metasurface on an elastic polydimethylsiloxane (PDMS) membrane operating at Terahertz (THz) frequencies synthesized using a “pattern and peel fabrication” technique. The tunability of the metasurface is based on the change of physical dimensions of the individual micro-structures due to the strain caused by mechanical stretching. The novelty of this technique is the ability to use high resolution e-beam patterning in contrast to established screen-printing techniques reported in the literature. The metasurface studied in this article is a periodic lattice of split-ring structures resonant at THz frequencies. The effect of mechanical stretching on the response of the metasurface is investigated thoroughly through experiments and numerical simulations. The response of the metamaterial to stretching manifests as a shift in the higher order mode by ∼ 12% for an applied strain of ∼ 25%. This tunability of the spectral response with macroscopic strain is not only substantial for the given structure, but also follows a linear behavior. This device can have potential applications in communications technology, remote strain sensing, chemical and biological sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Facile metal transfer method for fabricating unconventional metamaterial devices

Mei Zhu and Chengkuo Lee
Opt. Mater. Express 5(4) 733-741 (2015)

Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong
Opt. Express 19(8) 6990-6998 (2011)

Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong
Opt. Mater. Express 1(2) 151-157 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
    [Crossref] [PubMed]
  2. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
    [Crossref] [PubMed]
  3. J. B. Pendry, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007).
    [Crossref]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
    [Crossref] [PubMed]
  6. S. A. Ramakrishna, “Physics of negative refractive index materials,” Reports on Prog. Phys. 68, 449 (2005).
    [Crossref]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  8. R. A. Shelby, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
    [Crossref]
  11. N. N. Engheta, R. W. Ziolkowski, and Institute of Electrical and Electronics Engineers., Metamaterials : physics and engineering explorations (Wiley-Interscience, 2006).
    [Crossref]
  12. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
    [Crossref] [PubMed]
  13. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach,” Opt. Express 15, 8871 (2007).
    [Crossref] [PubMed]
  14. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [Crossref] [PubMed]
  15. M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
    [Crossref]
  16. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
    [Crossref]
  17. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
    [Crossref]
  18. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
    [Crossref]
  19. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
    [Crossref]
  20. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
    [Crossref]
  21. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
    [Crossref]
  22. M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
    [Crossref]
  23. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390–14396 (2008).
    [Crossref] [PubMed]
  24. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
    [Crossref] [PubMed]
  25. E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17, 16046 (2009).
    [Crossref] [PubMed]
  26. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref] [PubMed]
  27. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
    [Crossref]
  28. W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
    [Crossref] [PubMed]
  29. K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (pdms),” Opt. Express 2321375 (2005).
  30. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
    [Crossref]
  31. S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
    [PubMed]
  32. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
    [Crossref]
  33. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
    [Crossref]
  34. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
    [Crossref] [PubMed]
  35. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
    [Crossref]
  36. B. J. Roxworthy and K. C. Toussaint, “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20, 9591–9603 (2012).
    [Crossref] [PubMed]
  37. P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
    [Crossref]
  38. I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
    [Crossref]
  39. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
    [Crossref] [PubMed]
  40. D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
    [Crossref]
  41. N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
    [Crossref]
  42. B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
    [Crossref]
  43. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
    [Crossref]
  44. A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
    [Crossref]
  45. M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42, 2106–2109 (2017).
    [Crossref] [PubMed]
  46. L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
    [Crossref]
  47. C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
    [Crossref]
  48. C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
    [Crossref]
  49. G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
    [Crossref]

2018 (2)

P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
[Crossref]

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

2017 (3)

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42, 2106–2109 (2017).
[Crossref] [PubMed]

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

2016 (1)

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
[Crossref]

2015 (1)

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

2014 (1)

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

2013 (4)

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
[Crossref]

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
[Crossref] [PubMed]

2012 (3)

B. J. Roxworthy and K. C. Toussaint, “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20, 9591–9603 (2012).
[Crossref] [PubMed]

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

2011 (2)

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
[Crossref] [PubMed]

2010 (2)

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

2009 (5)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17, 16046 (2009).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

2008 (3)

2007 (4)

2006 (5)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
[Crossref]

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

2005 (4)

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (pdms),” Opt. Express 2321375 (2005).

S. A. Ramakrishna, “Physics of negative refractive index materials,” Reports on Prog. Phys. 68, 449 (2005).
[Crossref]

2004 (3)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

2002 (2)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
[Crossref]

C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

2001 (1)

R. A. Shelby, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Abbott, D.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Achanta, V.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Achanta, V. G.

P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
[Crossref]

Agarwal, G. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Akin, T.

Alonzo, M.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

Azad, A. K.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Bettiol, A. A.

Bhaskaran, M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Bhattacharya, A.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
[Crossref]

Bingham, C. M.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

Bitzer, A.

Blair, S.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Boyd, E. M.

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Byun, I.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
[Crossref]

Chakrabarti, S.

Chang, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Chen, H.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Chen, K.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Cheng, Y.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

Cheng, Z.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

Chipouline, A.

Choi, M.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Chong, H. M. H.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

Chowdhury, D. R.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Ciret, C.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Coda, V.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Coleman, A. W.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
[Crossref]

Cong, L.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

de Miollis, F.

Demir, H. V.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Deshmukh, P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Dicken, M. J.

Duttagupta, S. P.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Ekmekci, E.

Engheta, N. N.

N. N. Engheta, R. W. Ziolkowski, and Institute of Electrical and Electronics Engineers., Metamaterials : physics and engineering explorations (Wiley-Interscience, 2006).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

Feurer, T.

Fu, G.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Garrido Alzar, C.

C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Gaur, D.

P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
[Crossref]

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Giessen, H.

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Gomez Rivas, J.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

Gorkunov, M. V.

M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
[Crossref]

Gothe, P. K.

P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
[Crossref]

Grzegorczyk, T. M.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Guillet, J. P.

Gupta, A.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Halpin, A.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

Han, J.

Han, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Huangfu, J.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Jin, C.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Johnson, N. P.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Khokhar, A. Z.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

Khoo, I.-C.

Kildishev, A. V.

Kim, B.

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
[Crossref]

Kim, J.-Y.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Kim, K.

Kim, S.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Kim, T.-T.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Kim, Y.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Kivshar, Y. S.

M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
[Crossref]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Kong, J. A.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Kuhl, J.

Kwon, D.-H.

Lakhtakia, A.

Lederer, F.

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Lee, S.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Lee, S. H.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Li, B.

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

Li, J.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Li, X.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Liang, C.-H.

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

Lim, S.

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Ling, K.

Liu, W.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Ma, J.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Manjappa, M.

Manson, N. B.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Martinez, M.

C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

McMeekin, S.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

McPeake, D.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

Melik, R.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Mennes, C.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

Merbold, H.

Min, B.

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Mitchell, A.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Montemezzani, G.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Mounaix, P.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Nussenzveig, P.

C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

O’Brien, S.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

O’Hara, J. F.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Ortner, A.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Palkhivala, S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Perkgoz, N. K.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Pertsch, T.

Petschulat, J.

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
[Crossref]

Prabhu, S. S.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

Pshenay-Severin, E.

Puttlitz, C.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Qiu, C.-W.

Ramakrishna, S. A.

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
[Crossref] [PubMed]

S. A. Ramakrishna, “Physics of negative refractive index materials,” Reports on Prog. Phys. 68, 449 (2005).
[Crossref]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

Ran, L.

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Rana, G.

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Rangelov, A. A.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Rivas, J. G.

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
[Crossref]

Rockstuhl, C.

Roxworthy, B. J.

Rue, R. M. D. L.

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
[Crossref]

Schaafsma, M. C.

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Shadrivov, I. V.

M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
[Crossref]

Shah, C. M.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007).
[Crossref]

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
[Crossref] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
[Crossref]

Shamonina, E.

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

She, X.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shen, Y.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright–dark terahertz metamaterial,” Opt. Lett. 42, 2106–2109 (2017).
[Crossref] [PubMed]

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Solymar, L.

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Sriram, S.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Srivastava, Y. K.

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

Su, T.

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

Suter, D.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Sweatlock, L. A.

Sydoruk, O.

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

Tan, S.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

Taylor, A. J.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Topalli, K.

Toussaint, K. C.

Turaga, S. P.

Turhan-Sayan, G.

Unal, E.

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

Ung, B. S.-Y.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

van Hoof, N.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Walavalkar, S.

Walther, M.

Wanare, H.

Wang, J.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Wei, C.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Werner, D. H.

Withayachumnankul, W.

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

Wu, B.

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

Wu, N.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

Xiao, G.

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Yahiaoui, R.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
[Crossref] [PubMed]

Yan, F.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

Yang, H.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

Yang, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Zentgraf, T.

Zhang, L.

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Zhang, W.

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Zhuromskyy, O.

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

Ziolkowski, R. W.

N. N. Engheta, R. W. Ziolkowski, and Institute of Electrical and Electronics Engineers., Metamaterials : physics and engineering explorations (Wiley-Interscience, 2006).
[Crossref]

ACS Photonics (1)

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3, 1596–1603 (2016).
[Crossref]

Adv. Mater. (1)

S. Lee, S. Kim, T.-T. Kim, Y. Kim, M. Choi, S. H. Lee, J.-Y. Kim, and B. Min, “Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts,” Adv. Mater. 24, 3491–34972012.
[PubMed]

Am. J. Phys. (1)

C. Garrido Alzar, M. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002).
[Crossref]

Appl. Phys. A (1)

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys. A 102, 99–103 (2011).
[Crossref]

Appl. Phys. Lett. (6)

R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, “Flexible metamaterials for wireless strain sensing,” Appl. Phys. Lett. 95, 181105 (2009).
[Crossref]

O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87072501 (2005).
[Crossref]

M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Enhanced parametric processes in binary metamaterials,” Appl. Phys. Lett. 88071912 (2006).
[Crossref]

J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013).
[Crossref]

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104, 101105 (2014).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Electron. Lett. (1)

N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. D. L. Rue, and S. McMeekin, “Characterisation at infrared wavelengths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42, 1117–1118 (2006).
[Crossref]

J. Appl. Phys. (2)

R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, “Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber,” J. Appl. Phys. 118, 083103 (2015).
[Crossref]

H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Metamaterial exhibiting left-handed properties over multiple frequency bands,” J. Appl. Phys. 96, 5338–5340 (2004).
[Crossref]

J. Electromagn. Waves Appl. (1)

B. Wu, B. Li, T. Su, and C.-H. Liang, “Equivalent-circuit analysis and lowpass filter design of split-ring resonator dgs,” J. Electromagn. Waves Appl. 20, 1943–1953 (2006).
[Crossref]

J. Micromechanics Microengineering (1)

I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (pdms) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (mptms) as a molecular adhesive,” J. Micromechanics Microengineering 23, 085016 (2013).
[Crossref]

J. Nonlinear Opt. Phys. & Mater. (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. & Mater. 11, 65–74 (2002).
[Crossref]

J. Phys. Commun. (1)

P. K. Gothe, D. Gaur, and V. G. Achanta, “Mptms self-assembled monolayer deposition for ultra-thin gold films for plasmonics,” J. Phys. Commun. 2, 035005 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” J. Phys. D: Appl. Phys. 41, 232004 (2008).
[Crossref]

Nano Lett. (1)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10, 4222–4227 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching pdms substrate,” Nanotechnology 28, 075301 (2017).
[Crossref] [PubMed]

Nat. communications (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and et al., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. communications 3, 1151 (2012).
[Crossref]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148 (2009).
[Crossref]

Opt. Express (9)

K. Ling, K. Kim, and S. Lim, “Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (pdms),” Opt. Express 2321375 (2005).

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15, 3342–3347 (2007).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach,” Opt. Express 15, 8871 (2007).
[Crossref] [PubMed]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390–14396 (2008).
[Crossref] [PubMed]

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
[Crossref] [PubMed]

E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Opt. Express 17, 16046 (2009).
[Crossref] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref] [PubMed]

A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
[Crossref] [PubMed]

B. J. Roxworthy and K. C. Toussaint, “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20, 9591–9603 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (2)

L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005).
[Crossref]

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, and G. Montemezzani, “Analog to electromagnetically induced transparency and autler-townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[Crossref]

Phys. Rev. Appl. (1)

G. Rana, P. Deshmukh, S. Palkhivala, A. Gupta, S. P. Duttagupta, S. S. Prabhu, V. Achanta, and G. S. Agarwal, “Quadrupole-quadrupole interactions to control plasmon-induced transparency,” Phys. Rev. Appl. 9, 064015 (2018).
[Crossref]

Phys. Rev. B (2)

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. Gomez Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96, 085110 (2017).
[Crossref]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[Crossref]

Phys. Rev. Lett. (3)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Plasmonics (1)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of near-field resonances in bowtie antennae: Influence of adhesion layers,” Plasmonics 4, 37–50 (2009).
[Crossref]

Reports on Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Reports on Prog. Phys. 68, 449 (2005).
[Crossref]

Science (4)

J. B. Pendry, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007).
[Crossref] [PubMed]

R. A. Shelby, “Experimental Verification of a Negative Index of Refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref] [PubMed]

Other (1)

N. N. Engheta, R. W. Ziolkowski, and Institute of Electrical and Electronics Engineers., Metamaterials : physics and engineering explorations (Wiley-Interscience, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the metasurface consisting gold SRRs on PDMS substrate. Inset shows the optical microscope image of the SRR array on the PDMS surface. (b) Processed optical microscope images of the SRRs structure under different applied strain values (S = 0, 0.1, 0.2). (c) A photograph showing the metasurface on the flexible PDMS substrate and, (d) shows the photograph of the custom-made cradle on the sample holder for mounting the stretchable metasurface for transmission measurements. The red arrows indicate the movements of the micrometer stage for stretching the metasurface, while the green arrows indicate the movement of the other micrometer stage for proper alignment of the film on the cradle.
Fig. 2
Fig. 2 Schematic of the entire fabrication process starting from bottom left to bottom right in a clockwise fashion. The inset shows the molecular structure of the MPTMS monolayer (shown in purple) which works as an molecular adhesive between the gold (shown in yellow) and PDMS layer (shown in grey). The green spheres represent Silicon atoms, blue represents Carbon, yellow for Sulphur, red for Oxygen and grey represents Hydrogen atoms.
Fig. 3
Fig. 3 (a) Shows the measured THz transmission spectra of the SRR array for different applied strains, indicated by S = 0 to 0.25, with the THz electric field polarization parallel to the gap between the split ends of the SRRs. (b) Shows the measured THz transmission spectra of the SRR array for different applied strains with the THz electric field polarization perpendicular to the gap between the split ends of the SRRs. The applied strain in both the cases is parallel to the split of the SRR. The spectra are numerically shifted vertically with respect to each other by 0.3 with increasing values of strain (black: S = 0, red: S = 0.05, blue: S = 0.1, magenta: S = 0.15, green: S = 0.2 and dark blue: S = 0.25). The green transparent vertical rectangles indicates the position of the resonances of the SRR in the un-stretched condition.
Fig. 4
Fig. 4 Illustrates the tunability of the 3λ/2 resonance dip (around 1.65 THz) with applied strain. The black squares indicated the measured data points extracted from Fig. 3(a), while the red solid line is a linear fit to the data points. Positive values in the vertical axis indicate blue-shift of resonance. Upper inset shows the simulation results for strain-induced shift of resonance. The green triangles are simulated data points while the black line is a linear fit. Lower inset shows similar data from a second sample with a thicker substrate thickness. Black squares are experimental data points while red line is linear fit.
Fig. 5
Fig. 5 Finite difference in time domain (FDTD) simulations of out-of-plane magnetic field amplitudes at (a) 0.6 THz, (b) 1 THz and (c) 1.65 THz in the vicinity of SRRs with incident electric field polarizations parallel to the gap between the split ends of the resonators. The green arrows are the simulated surface current vectors due to the charge density oscillations caused by THz excitation, while the black curves indicate the approximate current flow, for the ease of interpretation.
Fig. 6
Fig. 6 Demonstrates the observed splitting of the λ/2 and the λ modes of the SRR structure with increasing values of applied strain. The blue inverted triangles, and green triangles represents the position of the resonant frequency of the λ mode whereas, the red circles and black squares indicate the same for the λ/2 mode.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν res 1 C ,
ν res l ln ( ν res ) 1 2 ln ( l ) .
Δ ν res ν res S = 0 1 2 Δ l l ,

Metrics