Abstract

Upconversion luminescence of transition metal Ni2+ ions is seldom at room temperature (RT) due to large non-radiative transition probability. Here, a green Ni2+ upconversion luminescence at RT is obtained by the near-infrared excitation of Yb3+ 2F7/22F5/2 at 980 nm in Ni2+/Yb3+ codoped transparent wide bandgap semiconductor γ-Ga2O3 glass ceramics, which can be assigned to the Ni2+ 1T2(1D) → 3A2(3F) transition. Lifetime measurement and upconversion power dependence data reveal energy transfer upconversion as the underlying upconversion mechanism for the Yb3+-Ni2+ systems incorporated into the γ-Ga2O3 nanocrystals. It is suggested that the low thermal quenching effect of the wide bandgap semiconductor γ-Ga2O3 and resonant sensitizing of the Yb3+ 2F5/2 state to the Ni2+ upconversion 3T2(3F) intermedia state are responsible for the achievement of room-temperature upconversion luminescence of Ni2+. The results demonstrate that wide bandgap semiconductor nanocrystal (γ-Ga2O3, TiO2, SnO2, et al.) glass ceramics may be a good candidate for hosting Ni2+ room-temperature upconversion luminescence.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics

Botao Wu, Shifeng Zhou, Jian Ruan, Yanbo Qiao, Danping Chen, Congshan Zhu, and Jianrong Qiu
Opt. Express 16(3) 1879-1884 (2008)

Tunable white upconversion luminescence from Yb3+-Tm3+-Mn2+ tri-doped perovskite nanocrystals

E. H. Song, S. Ding, M. Wu, S. Ye, Z. T. Chen, Y. Y. Ma, and Q. Y. Zhang
Opt. Mater. Express 4(6) 1186-1196 (2014)

Enhanced upconversion in novel KLu2F7:Er3+ transparent oxyfluoride glass-ceramics

YunLe Wei, XiaoMan Li, and Hai Guo
Opt. Mater. Express 4(7) 1367-1372 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Varsanyi and G. H. Dieke, “Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence,” Phys. Rev. Lett. 7(12), 442–443 (1961).
    [Crossref]
  2. E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
    [Crossref]
  3. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  4. X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
    [Crossref] [PubMed]
  5. H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
    [Crossref] [PubMed]
  6. Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
    [Crossref] [PubMed]
  7. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
    [Crossref] [PubMed]
  8. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  9. S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
    [Crossref] [PubMed]
  10. O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
    [Crossref]
  11. O. S. Wenger and H. U. Güdel, “Photon upconversion properties of Ni2+ in magnetic and nonmagnetic chloride host lattices,” Inorg. Chem. 40(1), 157–164 (2001).
    [Crossref] [PubMed]
  12. O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
    [Crossref]
  13. O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
    [Crossref] [PubMed]
  14. S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
    [Crossref]
  15. J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
    [Crossref]
  16. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27(15), 1309–1311 (2002).
    [Crossref] [PubMed]
  17. T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
    [Crossref]
  18. B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
    [Crossref]
  19. S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
    [Crossref] [PubMed]
  20. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
    [Crossref] [PubMed]
  21. S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
    [Crossref]
  22. S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
    [Crossref] [PubMed]
  23. V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
    [Crossref] [PubMed]
  24. G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
    [Crossref]
  25. S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
    [Crossref]
  26. C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, and C. Rüssel, “Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics,” Opt. Lett. 40(22), 5263–5266 (2015).
    [Crossref] [PubMed]
  27. X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
    [Crossref]
  28. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
    [Crossref] [PubMed]
  29. B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
    [Crossref]
  30. V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
    [Crossref] [PubMed]
  31. Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
    [Crossref]
  32. Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
    [Crossref]
  33. R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
    [Crossref] [PubMed]
  34. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
    [Crossref]
  35. P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
    [Crossref]
  36. P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
    [Crossref]
  37. J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
    [Crossref]
  38. S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
    [Crossref]
  39. F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
    [Crossref]
  40. J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
    [Crossref]

2018 (5)

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
[Crossref]

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

2017 (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

2016 (1)

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
[Crossref] [PubMed]

2015 (3)

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

C. Lin, C. Liu, Z. Zhao, L. Li, C. Bocker, and C. Rüssel, “Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics,” Opt. Lett. 40(22), 5263–5266 (2015).
[Crossref] [PubMed]

2014 (2)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

2013 (3)

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

2012 (3)

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

2010 (1)

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

2009 (1)

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

2008 (4)

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

2007 (1)

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

2006 (1)

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

2005 (4)

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

2003 (1)

J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
[Crossref]

2002 (3)

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
[Crossref] [PubMed]

B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27(15), 1309–1311 (2002).
[Crossref] [PubMed]

2001 (2)

O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
[Crossref]

O. S. Wenger and H. U. Güdel, “Photon upconversion properties of Ni2+ in magnetic and nonmagnetic chloride host lattices,” Inorg. Chem. 40(1), 157–164 (2001).
[Crossref] [PubMed]

1998 (1)

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

1989 (1)

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

1961 (1)

F. Varsanyi and G. H. Dieke, “Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence,” Phys. Rev. Lett. 7(12), 442–443 (1961).
[Crossref]

Abernathy, C. R.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

Ali, M. E. M.

F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
[Crossref]

Beall, G. H.

Bénard, S.

O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
[Crossref] [PubMed]

Bi, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Bocker, C.

Borrelli, N. F.

Boulon, G.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Campione, M.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Castillo, J. D.

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

Champagnon, B.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

Chen, D.

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chu, Y.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Dhawan, A.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Dieke, G. H.

F. Varsanyi and G. H. Dieke, “Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence,” Phys. Rev. Lett. 7(12), 442–443 (1961).
[Crossref]

Dong, H.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Du, S. R.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Everitt, H. O.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Favennec, P. N.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Gad-Allah, T. A.

F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
[Crossref]

Gao, G.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

Gao, Z.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

Gerner, P.

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

Gnanasammandhan, M. K.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Gollakota, P.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Golubev, N. V.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Grimm, J.

J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
[Crossref]

Güdel, H. U.

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
[Crossref]

O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
[Crossref] [PubMed]

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

O. S. Wenger and H. U. Güdel, “Photon upconversion properties of Ni2+ in magnetic and nonmagnetic chloride host lattices,” Inorg. Chem. 40(1), 157–164 (2001).
[Crossref] [PubMed]

O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
[Crossref]

Guo, S.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Guyot, Y.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Guzik, M.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Han, S.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Hao, J.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

He, F.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Hirao, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Ho, P. C.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Hömmerich, U.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Hong, Z.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Hreniak, D.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Idris, N. M.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Ignat’eva, E. S.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Jiang, N.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Jiang, X.

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Jin, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Jin, S.

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

L’Haridon, H.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Le Guillou, Y.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Li, C.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Li, L.

Li, L. D.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Lin, C.

Liu, C.

Liu, D.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Liu, L.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Liu, X.

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Liu, Y.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Lorenzi, R.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Lu, W.

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

Lu, X.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Lu, Y.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Lunardi, L. M.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Lyu, G. M.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Ma, C.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Macfarlane, R. A.

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

MacKenzie, J. D.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Mahendran, R.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Margha, F. H.

F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
[Crossref]

Meinardi, F.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Méndez-Ramos, J.

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

Miura, K.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Moutonnet, D.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Murugan, G. S.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

Muth, J. F.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Nardou, E.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

Nishi, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Ohishi, Y.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

Orava, J.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Paleari, A.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Pearton, S. J.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Peng, H. Y.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Peng, M.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

Pinckney, L. R.

Piper, J. A.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiao, Y.

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiu, J.

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Radovanovic, P. V.

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Reibstein, S.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

Ren, J.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Rodríguez, V. D.

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

Ruan, J.

Rüssel, C.

Sakakura, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Salley, G. M.

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

Salvi, M.

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Samson, B. N.

Saripalli, Y. N.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Savinkov, V. I.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Seo, J. T.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Shimizu, M.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Shimotsuma, Y.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Sigaev, V. N.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

Song, E. H.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Spiecker, E.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

Stanish, P. C.

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

Strek, W.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Sun, L. D.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Sun, S.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

Suzuki, T.

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

Tanabe, S.

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

Torres, M. E.

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

Valiente, R.

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
[Crossref]

Varsanyi, F.

F. Varsanyi and G. H. Dieke, “Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence,” Phys. Rev. Lett. 7(12), 442–443 (1961).
[Crossref]

Vidal, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Vouagner, D.

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

Wagner, T.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Wang, F.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Wang, J.

Wellenius, P.

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

Wen, S.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Wenger, O. S.

J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
[Crossref]

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
[Crossref] [PubMed]

O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
[Crossref]

O. S. Wenger and H. U. Güdel, “Photon upconversion properties of Ni2+ in magnetic and nonmagnetic chloride host lattices,” Inorg. Chem. 40(1), 157–164 (2001).
[Crossref] [PubMed]

Wiglusz, R. J.

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Wilson, R. G.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Wondraczek, L.

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

Wu, B.

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Xi, P.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Xu, B.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Yan, C. H.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Yanes, A. C.

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

Yang, G.

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Yang, J.

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Yang, P.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Yang, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Ye, S.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Yue, Y.

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

Zavada, J. M.

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Zeng, H.

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

Zhang, C.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Zhang, J.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Zhang, P. Z.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Zhang, Q. Y.

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Zhang, Y.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Zhao, J.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhao, Z.

Zheng, L.

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Zheng, X.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zheng, X. Y.

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

Zhou, J.

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhou, S.

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Zhou, Z.

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Zhu, C.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express 16(4), 2508–2513 (2008).
[Crossref] [PubMed]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, “Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics,” Opt. Express 16(3), 1879–1884 (2008).
[Crossref] [PubMed]

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Adv. Funct. Mater. (2)

S. Zhou, N. Jiang, B. Wu, J. Hao, and J. Qiu, “Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials,” Adv. Funct. Mater. 19(13), 2081–2088 (2009).
[Crossref]

S. Zhou, C. Li, G. Yang, G. Bi, B. Xu, Z. Hong, K. Miura, K. Hirao, and J. Qiu, “Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid,” Adv. Funct. Mater. 23(43), 5436–5443 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Z. Gao, S. Guo, X. Lu, J. Orava, T. Wagner, L. Zheng, Y. Liu, S. Sun, F. He, P. Yang, J. Ren, and J. Yang, “Controlling selective doping and energy transfer between transition metal and rare earth ions in nanostructured glassy solids,” Adv. Opt. Mater. 6(13), 1701407 (2018).
[Crossref]

Adv. Sci. (Weinh.) (1)

S. Ye, E. H. Song, and Q. Y. Zhang, “Transition metal-involved photon upconversion,” Adv. Sci. (Weinh.) 3(12), 1600302 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

T. Suzuki, G. S. Murugan, and Y. Ohishi, “Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals,” Appl. Phys. Lett. 86(13), 131903 (2005).
[Crossref]

B. Wu, J. Ruan, J. Ren, D. Chen, C. Zhu, S. Zhou, and J. Qiu, “Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals,” Appl. Phys. Lett. 92(4), 041110 (2008).
[Crossref]

P. Gollakota, A. Dhawan, P. Wellenius, L. M. Lunardi, J. F. Muth, Y. N. Saripalli, H. Y. Peng, and H. O. Everitt, “Optical characterization of Eu-doped β-Ga2O3 thin films,” Appl. Phys. Lett. 88(22), 221906 (2006).
[Crossref]

J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, U. Hömmerich, J. T. Seo, R. G. Wilson, and J. M. Zavada, “Er doping of GaN during growth by metalorganic molecular beam epitaxy,” Appl. Phys. Lett. 72(21), 2710–2712 (1998).
[Crossref]

Chem. Phys. Lett. (1)

S. Jin, W. Lu, P. C. Stanish, and P. V. Radovanovic, “Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping,” Chem. Phys. Lett. 706, 509–514 (2018).
[Crossref]

Chem. Rev. (2)

H. Dong, S. R. Du, X. Y. Zheng, G. M. Lyu, L. D. Sun, L. D. Li, P. Z. Zhang, C. Zhang, and C. H. Yan, “Lanthanide nanoparticles: from design toward bioimaging and therapy,” Chem. Rev. 115(19), 10725–10815 (2015).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Dalton Trans. (1)

R. J. Wiglusz, G. Boulon, Y. Guyot, M. Guzik, D. Hreniak, and W. Strek, “Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel,” Dalton Trans. 43(21), 7752–7759 (2014).
[Crossref] [PubMed]

Electron. Lett. (1)

P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials,” Electron. Lett. 25(11), 718–719 (1989).
[Crossref]

Inorg. Chem. (2)

O. S. Wenger, S. Bénard, and H. U. Güdel, “Crystal field effects on the optical absorption and luminescence properties of Ni2+-doped chlorides and bromides: crossover in the emitting higher excited state,” Inorg. Chem. 41(23), 5968–5977 (2002).
[Crossref] [PubMed]

O. S. Wenger and H. U. Güdel, “Photon upconversion properties of Ni2+ in magnetic and nonmagnetic chloride host lattices,” Inorg. Chem. 40(1), 157–164 (2001).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

S. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010).
[Crossref] [PubMed]

J. Lumin. (1)

J. Grimm, O. S. Wenger, and H. U. Güdel, “Broadband green upconversion luminescence of Ni2+ in KZnF3,” J. Lumin. 102–103, 380–385 (2003).
[Crossref]

J. Mater. Chem. (1)

G. Gao, S. Reibstein, E. Spiecker, M. Peng, and L. Wondraczek, “Broadband NIR photoluminescence from Ni2+-doped nanocrystalline Ba–Al titanate glass ceramics,” J. Mater. Chem. 22(6), 2582–2588 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Gao, X. Lu, Y. Chu, S. Guo, L. Liu, Y. Liu, S. Sun, J. Ren, and J. Yang, “The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(12), 2944–2950 (2018).
[Crossref]

J. Mater. Res. (1)

B. Wu, J. Qiu, N. Jiang, S. Zhou, J. Ren, D. Chen, X. Jiang, and C. Zhu, “Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals,” J. Mater. Res. 22(12), 3410–3414 (2007).
[Crossref]

Nanoscale (1)

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, B. Champagnon, D. Vouagner, E. Nardou, R. Lorenzi, and A. Paleari, “Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices,” Nanoscale 5(1), 299–306 (2013).
[Crossref] [PubMed]

Nanotechnology (3)

V. N. Sigaev, N. V. Golubev, E. S. Ignat’eva, V. I. Savinkov, M. Campione, R. Lorenzi, F. Meinardi, and A. Paleari, “Nickel-assisted growth and selective doping of spinel-like gallium oxide nanocrystals in germano-silicate glasses for infrared broadband light emission,” Nanotechnology 23(1), 015708 (2012).
[Crossref] [PubMed]

J. D. Castillo, V. D. Rodríguez, A. C. Yanes, J. Méndez-Ramos, and M. E. Torres, “Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method,” Nanotechnology 16(5), S300–S303 (2005).
[Crossref]

S. Zhou, N. Jiang, H. Dong, H. Zeng, J. Hao, and J. Qiu, “Size-induced crystal field parameter change and tunable infrared luminescence in Ni2+-doped high-gallium nanocrystals embedded glass ceramics,” Nanotechnology 19(1), 015702 (2008).
[Crossref] [PubMed]

Nat. Med. (1)

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Nature (1)

Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin, P. Xi, and D. Jin, “Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy,” Nature 543(7644), 229–233 (2017).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter Mater. Phys. (4)

S. García-Revilla, P. Gerner, H. U. Güdel, and R. Valiente, “Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3,” Phys. Rev. B Condens. Matter Mater. Phys. 72(12), 125111 (2005).
[Crossref]

O. S. Wenger, G. M. Salley, R. Valiente, and H. U. Güdel, “Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+: NaCl and Ni2+: CsCdCl3,” Phys. Rev. B Condens. Matter Mater. Phys. 65(21), 212108 (2002).
[Crossref]

O. S. Wenger, R. Valiente, and H. U. Güdel, “Optical spectroscopy of the Ni2+-doped layer perovskites Rb2MCl4 (M=Cd, Mn): Effects of Ni2+- Mn2+ exchange interactions on the Ni2+ absorption, luminescence, and upconversion properties,” Phys. Rev. B Condens. Matter Mater. Phys. 64(23), 235116 (2001).
[Crossref]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 71(12), 125123 (2005).
[Crossref]

Phys. Rev. Lett. (1)

F. Varsanyi and G. H. Dieke, “Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence,” Phys. Rev. Lett. 7(12), 442–443 (1961).
[Crossref]

Prog. Mater. Sci. (1)

X. Liu, J. Zhou, S. Zhou, Y. Yue, and J. Qiu, “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci. 97, 38–96 (2018).
[Crossref]

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. A. Macfarlane, “Three color, solid-state, three-dimensional display,” Science 273(5279), 1185–1189 (1996).
[Crossref]

Silicon (1)

F. H. Margha, M. E. M. Ali, and T. A. Gad-Allah, “Transparent nanocrystalline glass-ceramic system for organic pollutants degradation,” Silicon 10(1), 123–129 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) XRD patterns of Ni2+/Yb3+ codoped glass and undoped, Ni2+-doped, Yb3+-doped and Ni2+/Yb3+ codoped GCs. XRD patterns of other glasses are very similar to the Ni2+/Yb3+ codoped one, and thus not repeated here. The standard JCPDF card of γ-Ga2O3 is also presented. (b) Typical TEM image of the GC. The inset is the selected-area electron diffraction pattern.
Fig. 2
Fig. 2 (a) Absorption spectra of undoped GC, Ni2+-doped glass and GC, Yb3+-doped GC, and Ni2+/Yb3+ codoped glass and GC. (b) Energy level diagram of Ni2+/Yb3+ codoped GC which shows energy transfer upconversion process of Ni2+. Solid and curly arrows represent radiative and nonradiative energy transfer processes respectively.
Fig. 3
Fig. 3 (a) Visible emission spectra of Ni2+-, Yb3+- and Ni2+/Yb3+-doped glasses and GCs excited at 980 nm. The inset shows the luminescent photographs of Yb3+- and Ni2+/Yb3+-doped GCs. (b) Decay curves of Yb3+- and Ni2+/Yb3+-doped GCs under 980 nm excitation. Green and blue lines represent single- and two-exponential fitting respectively.
Fig. 4
Fig. 4 Emission spectrum of Ni2+/Yb3+-doped GC excited at 382 nm.
Fig. 5
Fig. 5 Excitation power dependence of Ni2+ 1T2(1D) UC luminescence at 494 nm under 980 nm excitation. Red lines are the linear fitting.

Metrics